Skip to main content

Advertisement

Log in

Reproducibility in the global indices for multifocal visual evoked potentials and Humphrey visual fields in controls and glaucomatous eyes within a 2-year period

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

In previous studies, we applied receiver operating characteristic curve analysis to the signal-to-noise ratio distributions in the signal and noise windows of multifocal VEP (mfVEP) response. The areas under the curve thus obtained (SNR-AUC) were found to quantitatively detect glaucomatous visual field damage. The present study evaluated the reproducibility of SNR-AUC and the Humphrey visual field (HVF) global indices in 37 eyes with primary open angle glaucoma (POAG; POAG group) and in 30 controls (control group) within a 2-year period.

Methods

The HVF SITA standard 24-2 and mfVEP were recorded at three separate sessions for each individual. The intersession variability for SNR-AUC, mean deviation (MD), and pattern standard deviation (PSD) was evaluated using the repeated measures of analysis of variance and Bland–Altman plots. The logarithmically converted coefficients of variation (CV) of PSD and SNR-AUC were compared between the control and POAG groups. Linear regression analyses were performed on the logarithmic CV of SNR-AUC against the average MD, PSD, and SNR-AUC.

Results

SNR-AUC in the POAG group was significantly lower and its CV was greater compared with the control group (P < 0.0001). MD value recorded at the third visit had significantly improved than that at the first visit in the control group (analysis of variance, P = 0.03), whereas PSD value was significantly worse in the POAG group (P = 0.024). In the POAG group, SNR-AUC CV increased as the glaucoma stage became more advanced when evaluated by any functional parameters tested (i.e., MD, PSD, or SNR-AUC).

Conclusions

The SNR-AUC of mfVEP showed a high reproducibility in control group, whereas it fluctuated more in the POAG group according to the disease severity. MD in the control group and PSD in POAG group fluctuated among sessions during the 2-year period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baseler HA, Sutter EE, Klein SA, Carney T (1994) The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol 90:65–81

    Article  CAS  PubMed  Google Scholar 

  2. Klistorner AI, Graham SL, Grigg JR, Billson FA (1998) Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest Ophthalmol Vis Sci 39:937–950

    CAS  PubMed  Google Scholar 

  3. Klistorner A, Graham SL (2000) Objective perimetry in glaucoma. Ophthalmology 107:2283–2299

    Article  CAS  PubMed  Google Scholar 

  4. Hood DC, Greenstein VC (2003) Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog Retin Eye Res 22:201–251

    Article  PubMed  Google Scholar 

  5. Goldberg I, Graham SL, Klistorner AI (2002) Multifocal objective perimetry in the detection of glaucomatous field loss. Am J Ophthalmol 133:29–39

    Article  PubMed  Google Scholar 

  6. Hood DC, Thienprasiddhi P, Greenstein VC, Winn BJ, Ohri N, Liebmann JM, Ritch R (2004) Detecting early to mild glaucomatous damage: a comparison of the multifocal VEP and automated perimetry. Invest Ophthalmol Vis Sci 45:492–498

    Article  PubMed  Google Scholar 

  7. Graham SL, Klistorner A, Goldberg I (2005) Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. Arch Ophthalmol 123:729–739

    Article  PubMed  Google Scholar 

  8. Balachandran C, Graham SL, Klistorner A, Goldberg I (2006) Comparison of objective diagnostic tests in glaucoma. Heidelberg retinal tomography and multifocal visual evoked potentials. J Glaucoma 15:110–116

    Article  CAS  PubMed  Google Scholar 

  9. Fortune B, Demirel S, Zhang X, Hood DC, Patterson E, Jamil A, Mansberger SL, Cioffi GA, Johnson CA (2007) Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci 48:1173–1180

    Article  PubMed  Google Scholar 

  10. Hood DC, Kardon RH (2007) A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res 26:688–710

    Article  PubMed Central  PubMed  Google Scholar 

  11. Ishikawa K, Nagai T, Yamada Y, Negi A, Nakamura M (2011) Optimal conditions for multifocal VEP recording for normal Japanese population established by receiver operating characteristic analysis. Doc Ophthalmol 122:29–37

    Article  PubMed  Google Scholar 

  12. Nakamura M, Ishikawa K, Nagai T, Negi A (2011) Receiver-operating characteristic analysis of multifocal VEPs to diagnose and quantify glaucomatous functional damage. Doc Ophthalmol 123:93–108

    Article  PubMed  Google Scholar 

  13. Chen CS, Hood DC, Zhang X, Karam EZ, Liebmann JM, Ritch R, Thienprasiddhi P, Greenstein VC (2003) Repeat reliability of the multifocal visual evoked potential in normal and glaucomatous eyes. J Glaucoma 12:399–408

    Article  CAS  PubMed  Google Scholar 

  14. Bjerre A, Grigg JR, Parry NR, Hensen DB (2004) Test-retest variability of multifocal visual evoked potential and SITA standard perimetry in glaucoma. Invest Ophthalmol Vis Sci 45:4035–4040

    Article  PubMed  Google Scholar 

  15. Klistorner A, Graham SL (2005) Intertest variability of mfVEP amplitude: reducing its effect on the interpretation of sequential tests. Doc Ophthalmol 111:159–167

    Article  CAS  PubMed  Google Scholar 

  16. Fortune B, Demirel S, Zhang X, Hood DC, Johnson CA (2006) Repeatability of normal multifocal VEP: implications for detecting progression. J Glaucoma 15:131–141

    Article  PubMed  Google Scholar 

  17. Wangsupadilok B, Greenstein VC, Kanadani FN, Grippo TM, Liebmann JM, Ritch R, Hood DC (2009) A method to detect progression of glaucoma using the multifocal visual evoked potential technique. Doc Ophthalmol 118:139–150

    Article  PubMed Central  PubMed  Google Scholar 

  18. Russell RA, Crabb DP, Malik R, Garway-Heath DF (2012) The relationship between variability and sensitivity in large-scale longitudinal visual field data. Invet Ophthalmom Vis Sci 53:5985–5990

    Article  Google Scholar 

  19. Anderson D, Pattela V (1992) Automated static perimetry, 2nd edn. St Louis, Missouri, pp 143–153

    Google Scholar 

  20. Nakamura M, Kato K, Kamata S, Ishikawa K, Nagai T (2014) Effects of refractive errors on multifocal VEP responses and standard automated perimetry tests in a single population. Doc Ophthalmol 128:179–189

    Article  PubMed  Google Scholar 

  21. Meigen T, Krämer M (2007) Optimizing electrode positions and analysis strategies for multifocal VEP recordings by ROC analysis. Vis Res 47:1445–1454

    Article  PubMed  Google Scholar 

  22. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  23. Heijl A, Lindgren G, Olsson J (1987) Normal variability of static perimetric threshold values across the central visual field. Arch Ophthalmol 105:1544–1549

    Article  CAS  PubMed  Google Scholar 

  24. Heijl A, Lindgren G, Olsson J (1989) The effect of perimetric experience in normal subjects. Arch Ophthalmol 107:81–86

    Article  CAS  PubMed  Google Scholar 

  25. Gardiner SK, Demirel S, Gordon MO, Kass MA (2013) The ocular hypertension treatment study group. Seasonal changes in visual field sensitivity and intraocular pressure in the ocular hypertension treatment study. Ophthalmology 120:724–730

    Article  PubMed Central  PubMed  Google Scholar 

  26. Gardiner SK, Demirel S, Johnson CA (2008) Is there evidence for continued learning over multiple years in perimetry? Optom Vis Sci 85:1043–1048

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-in-Aid 22390324 (A.N., M.N.) and 20592043 (M.N., A.N.) from the Ministry of Education, Culture, Sports, and Science and Technology of the Japanese government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Nakamura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, Y., Kato, K., Kamata, S. et al. Reproducibility in the global indices for multifocal visual evoked potentials and Humphrey visual fields in controls and glaucomatous eyes within a 2-year period. Doc Ophthalmol 131, 115–124 (2015). https://doi.org/10.1007/s10633-015-9506-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-015-9506-x

Keywords

Navigation