Skip to main content
Log in

New quantum codes from self-dual codes over \(\mathbb {F}_4\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We present new constructions of binary quantum codes from quaternary linear Hermitian self-dual codes. Our main ingredients for these constructions are nearly self-orthogonal cyclic or duadic codes over \(\mathbb {F}_4\). An infinite family of 0-dimensional binary quantum codes is provided. We give minimum distance lower bounds for our quantum codes in terms of the minimum distance of their ingredient linear codes. We also present new results on the minimum distance of linear cyclic codes using their fixed subcodes. Finally, we list many new record-breaking quantum codes obtained from our constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly S.A., Klappenecker A., Sarvepalli P.K.: Remarkable degenerate quantum stabilizer codes derived from duadic codes. In: 2006 IEEE International Symposium on Information Theory, pp. 1105–1108 (2006).

  2. Bosma W., Cannon J., Playoust C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997).

    Article  MathSciNet  Google Scholar 

  3. Calderbank A.R., Rains E.M., Shor P., Sloane N.J.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).

    Article  MathSciNet  Google Scholar 

  4. Ding C.: Cyclic codes over finite fields. In: Huffman W.C., Kim J.-L., Solé P. (eds.) Concise Encyclopedia of Coding Theory, Chapter 2. Chapman and Hall/CRC, Boca Raton (2021).

    Google Scholar 

  5. Gaborit P., Nedeloaia C.-S., Wassermann A.: On the weight enumerators of duadic and quadratic residue codes. IEEE Trans. Inf. Theory 51(1), 402–407 (2005).

    Article  MathSciNet  Google Scholar 

  6. Gottesman D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54(3), 1862 (1996).

    Article  MathSciNet  Google Scholar 

  7. Grassl M.: Code tables: bounds on the parameters of various types of codes. http://www.codetables.de/.

  8. Grassl M.: Algebraic quantum codes: linking quantum mechanics and discrete mathematics. Int. J. Comput. Math. Comput. Syst. Theory 6(4), 243–259 (2021).

    Article  MathSciNet  Google Scholar 

  9. Grassl M.: New quantum codes from CSS codes. Quantum Inf. Process. 22(1), 86 (2023).

    Article  MathSciNet  Google Scholar 

  10. Guenda K.: Quantum duadic and affine-invariant codes. Int. J. Quantum Inf. 7(01), 373–384 (2009).

    Article  Google Scholar 

  11. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2010).

    Google Scholar 

  12. Joundan A., Nouh S., Namir A.: New efficient techniques to catch lowest weights in large quadratic residue codes. In: Proc. of the 5th International Conference on Advances in Computing, Electronics and Communication, pp. 42–46 (2017).

  13. Joundan I.A., Nouh S., Azouazi M., Namir A.: A new efficient way based on special stabilizer multiplier permutations to attack the hardness of the minimum weight search problem for large BCH codes. Int. J. Electr. Comput. Eng. 9(2), 1232 (2019).

    Google Scholar 

  14. Leon J., Masley J., Pless V.: Duadic codes. IEEE Trans. Inf. Theory 30(5), 709–714 (1984).

    Article  MathSciNet  Google Scholar 

  15. Lisoněk P., Singh V.: Quantum codes from nearly self-orthogonal quaternary linear codes. Des. Codes Cryptogr. 73(2), 417–424 (2014).

    Article  MathSciNet  Google Scholar 

  16. Pless V.: Q-codes. J. Comb. Theory A 43(2), 258–276 (1986).

    Article  MathSciNet  Google Scholar 

  17. Pless V.: Duadic codes and generalizations. In: Eurocode ’92, pp. 3–15. Springer (1993).

  18. Pless V., Masley J.M., Leon J.S.: On weights in duadic codes. J. Comb. Theory A 44(1), 6–21 (1987).

    Article  MathSciNet  Google Scholar 

  19. Smid M.: Duadic codes. IEEE Trans. Inf. Theory 33(3), 432–433 (1987).

    Article  MathSciNet  Google Scholar 

  20. Su W.K., Shih P.Y., Lin T.C., Truong T.K.: On the minimum weights of binary extended quadratic residue codes. In: 2009 11th International Conference on Advanced Communication Technology, vol. 03, pp. 1912–1913 (2009).

  21. Truong T.K., Lee C., Chang Y., Su W.K.: A new scheme to determine the weight distributions of binary extended quadratic residue codes. IEEE Trans. Commun. 57(5), 1221–1224 (2009).

    Article  Google Scholar 

  22. Vardy A.: The intractability of computing the minimum distance of a code. IEEE Trans. Inf. Theory 43(6), 1757–1766 (1997).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Markus Grassl for many interesting discussions and for sharing the recent paper [9]. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Project No. RGPIN-2015-06250 and RGPIN-2022-04526.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Lisoněk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue: Coding and Cryptography 2022”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastbasteh, R., Lisoněk, P. New quantum codes from self-dual codes over \(\mathbb {F}_4\). Des. Codes Cryptogr. 92, 787–801 (2024). https://doi.org/10.1007/s10623-023-01306-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01306-5

Keywords

Mathematics Subject Classification

Navigation