Skip to main content
Log in

Abstract

Using characterizations of ovals, KM-arcs and elliptic quadrics recently described in polar coordinates, we construct some families of LCD, self-orthogonal, three-weight and four-weight linear codes. We also demonstrate some applications to quantum codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdukhalikov K.: Bent functions and line ovals. Finite Fields Appl. 47, 94–124 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdukhalikov K.: Hyperovals and bent functions. Eur. J. Comb. 79, 123–139 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdukhalikov K.: Short description of the Lunelli-Sce hyperoval and its automorphism group. J. Geom. 110, Paper No. 54, 8 (2019).

  4. Abdukhalikov K.: Equivalence classes of Niho bent functions. Des. Codes Cryptogr. 89, 1509–1534 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  5. Abdukhalikov K., Ho D.: Vandermonde sets, hyperovals and Niho bent functions. Adv. Math. Commun. https://doi.org/10.3934/amc.2021048.

  6. Abdukhalikov K., Ho D.: Extended cyclic codes, maximal arcs and ovoids. Des. Codes Cryptogr. 89, 2283–2294 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  7. Abdukhalikov K., Ho D.: Polar coordinates view on KM-arcs. Gr. Comb. 37, 1467–1490 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  8. Anderson R., Ding C., Helleseth T., Kløve T.: How to build robust shared control systems. Des. Codes Cryptogr. 15, 111–124 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  9. Baart R., Boothby T., Cramwinckel J., Fields J., Joyner D., Miller R., Minkes E., Roijackers E., Ruscio L., Tjhai C.: GUAVA: a GAP package, version 3.17, 05/09/2022.

  10. Ball S.: Polynomials in Finite Geometries. Surveys In Combinatorics, 1999 (Canterbury). 267 pp. 17-35 (1999).

  11. Ball S.: Some constructions of quantum MDS codes. Des. Codes Cryptogr. 89, 811–821 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  12. Ball S.: The Grassl-Rötteler cyclic and consta-cyclic MDS codes are generalised Reed-Solomon codes. arXiv:org/abs/2112.11896.

  13. Ball S., Vilar R.: The geometry of Hermitian self-orthogonal codes. J. Geom. 113(1), Paper No. 7, 12 pp. (2022).

  14. Ball S., Centelles A., Huber F.: Quantum error-correcting codes and their geometries. Ann. Inst. Henri Poincare Comb. Phys. Interact. To appear. arXiv:2007.05992.

  15. Blokhuis A., Marino G., Mazzocca F., Polverino O.: On almost small and almost large super-Vandermonde sets in \(\text{ GF }(q)\). Des. Codes Cryptogr. 84, 197–201 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  16. Carlet C., Ding C., Yuan J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inform. Theory. 51, 2089–2102 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  17. Carlet C., Guilley S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10, 131–150 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. Carlet C., Mesnager S., Tang C., Qi Y.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86, 2605–2618 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  19. De Boeck M., Van de Voorde G.: A linear set view on KM-arcs. J. Algebr. Comb. 44, 131–164 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  20. Ding C.: Designs from Linear Codes. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2019).

  21. Ding C., Helleseth T., Kløve T., Wang X.: A generic construction of Cartesian authentication codes. IEEE Trans. Inform. Theory 53, 2229–2235 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  22. Ding C., Heng Z.: The subfield codes of ovoid codes. IEEE Trans. Inform. Theory 65, 4715–4729 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  23. Ding C., Wang X.: A coding theory construction of new systematic authentication codes. Theor. Comput. Sci. 330, 81–99 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  24. Fang X., Liu M., Luo J.: New MDS Euclidean self-orthogonal codes. IEEE Trans. Inform. Theory. 67, 130–137 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  25. Fisher J., Schmidt B.: Finite Fourier series and ovals in \(\text{ PG }(2,2^h)\). J. Aust. Math. Soc. 81, 21–34 (2006).

    Article  MathSciNet  Google Scholar 

  26. Gács A., Weiner Z.: On \((q+t, t)\)-arcs of type \((0,2, t)\). Des. Codes Cryptogr. 29, 131–139 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  27. Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de.

  28. Grassl M., Gulliver T.A.: On circulant self-dual codes over small fields. Des. Codes Cryptogr. 52, 57–81 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  29. Heng Z., Ding C.: The subfield codes of hyperoval and conic codes. Finite Fields Appl. 56, 308–331 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  30. Huffman W., Kim J., Solé P.: Concise Encyclopedia of Coding Theory. CRC Press, Taylor and Francis Group, London, New York (2021).

    Book  MATH  Google Scholar 

  31. Huffman W., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  32. Korchmáros G., Mazzocca F.: On \((q+t)\)-arcs of type \((0,2, t)\) in a Desarguesian plane of order \(q\). Math. Proc. Camb. Philos. Soc. 108, 445–459 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  33. Li C., Ding C., Li S.: LCD cyclic codes over finite fields. IEEE Trans. Inform. Theory 63, 4344–4356 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  34. Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and its Applications, vol. 20, 2nd edn Cambridge University Press, Cambridge (1997).

    Google Scholar 

  35. Ling S., Luo J., Xing C.: Generalization of Steane’s enlargement construction of quantum codes and applications. IEEE Trans. Inform. Theory. 56, 4080–4084 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  36. Massey J.L.: Linear codes with complementary duals. Discret. Math. 106, 337–342 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  37. Shi M., Sok L., Solé P., Çalkavur S.: Self-dual codes and orthogonal matrices over large finite fields. Finite Fields Appl. 54, 297–314 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  38. Sok L., Shi M., Solé P.: Constructions of optimal LCD codes over large finite fields. Finite Fields Appl. 50, 138–153 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  39. Sziklai P., Takáts M.: Vandermonde sets and super-Vandermonde sets. Finite Fields Appl. 14, 1056–1067 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  40. The GAP Group: GAP: Groups, Algorithms, and Programming, Version 4.12.2; 2022. https://www.gap-system.org.

  41. Vandendriessche P.: Codes of Desarguesian projective planes of even order, projective triads and (q+t, t)-arcs of type (0,2, t). Finite Fields Appl. 17, 521–531 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  42. Vandendriessche P.: On KM-arcs in small Desarguesian planes. Electron. J. Comb. 24, Paper 1.51, 11 (2017).

  43. Wang Q., Heng Z.: Near MDS codes from oval polynomials. Discret Math.. 344, Paper No. 112277, 10 (2021).

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their detailed comments, especially for pointing out the connection between the secants to a KM-arc and the weight enumerator of the linear code in Theorem 7. This allowed us to extend Theorems 8 and 9 in the revised version.

This work was supported by UAEU grant G00003490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duy Ho.

Ethics declarations

Data Deposition Information

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue: Finite Geometries 2022”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdukhalikov, K., Ho, D. Linear codes from arcs and quadrics. Des. Codes Cryptogr. (2023). https://doi.org/10.1007/s10623-023-01255-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10623-023-01255-z

Keywords

Mathematics Subject Classification

Navigation