Skip to main content
Log in

An asymptotic lower bound on the number of bent functions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A Boolean function f on n variables is said to be a bent function if the absolute value of all its Walsh coefficients is \(2^{n/2}\). Our main result is a new asymptotic lower bound on the number of Boolean bent functions. It is based on a modification of the Maiorana–McFarland family of bent functions and recent progress in the estimation of the number of transversals in latin squares and hypercubes. By-products of our proofs are the asymptotics of the logarithm of the numbers of partitions of the Boolean hypercube into 2-dimensional affine and linear subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

The paper has no associated data.

References

  1. Agievich S.V.: On the representation of bent functions by bent rectangles. In: Probabilistic Methods in Discrete Mathematics, Proceedings of the Fifth International Petrozavodsk Conference, pp. 121–135, Utrecht, Boston (2002)

  2. Agievich S.: Bent rectangles. In: Proceedings of the NATO advanced study institute on Boolean functions in cryptology and information security, NATO Science for Peace and Security Series D: Information and Communication Security, vol. 18, pp. 3–22, Amsterdam (2008).

  3. Agievich S.V.: On the continuation to bent functions and upper bounds on their number. Prikl. Diskr. Mat. Suppl. 13, 18–21 (2020).

    Google Scholar 

  4. Baksova I.P., Tarannikov Y.V.: On a construction of bent functions. Surv. Appl. Ind. Math. 27(1), 64–66 (2020).

    Google Scholar 

  5. Baksova I.P., Tarannikov Y.V.: The bounds on the number of partitions of the space \( {F}_2^m\) into \(k\)-dimensional affine subspaces. Mosc. Univ. Math. Bull. 77, 131–135 (2022).

    Article  Google Scholar 

  6. Canfield E.R., Gao Z., Greenhill C., McKay B.D., Robinson R.W.: Asymptotic enumeration of correlation-immune Boolean functions. Cryptogr. Commun. 2(1), 111–126 (2010).

    Article  MathSciNet  Google Scholar 

  7. Canteaut A., Charpin P.: Decomposing bent functions. IEEE Trans. Inf. Theory 49(8), 2004–2019 (2003).

    Article  MathSciNet  Google Scholar 

  8. Carlet C.: Two new classes of bent functions. In: Helleseth T. (ed.) Advances in Cryptology–.EUROCRYPT’93. EUROCRYPT 1993. Lecture Notes in Computer Science, vol. 765. Springer, Berlin (1994).

    Google Scholar 

  9. Carlet C., Klapper A.: Upper bounds on the number of resilient functions and of bent functions. In: Proceedings of the 23rd Symposium on Information Theory in the Benelux, Louvain-La-Neuve, Belgium (2002).

  10. Carlet C.: On the confusion and diffusion properties of Maiorana–McFarland’s and extended Maiorana-McFarland’s functions. In: Special Issue “Complexity Issues in Coding and Cryptography”, dedicated to Prof. H. Niederreiter on the occasion of his 60th birthday, pp. 182–204, J. of Complexity 20, (2004).

  11. Carlet C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2020).

    Book  Google Scholar 

  12. Carlet C., Mesnager S.: Four decades of research on bent functions. Des. Codes Cryptogr. 78(1), 5–50 (2016).

    Article  MathSciNet  Google Scholar 

  13. Çeşmelioğlu A., Meidl W.: A construction of bent functions from plateaued functions. Des. Codes Cryptogr. 66(1–3), 231–242 (2013).

    Article  MathSciNet  Google Scholar 

  14. Çeşmelioğlu A., Meidl W., Pott A.: Generalized Maiorana–McFarland class and normality of \(p\)-ary bent functions. Finite Fields Appl. 24, 105–117 (2013).

    Article  MathSciNet  Google Scholar 

  15. Eberhard S.: More on additive triples of bijections. arxiv:1704.02407.

  16. Hodžić S., Pasalic E., Wei Y., Zhang F.: Designing plateaued Boolean functions in spectral domain and their classification. IEEE Trans. Inf. Theory 65(9), 5865–5879 (2019).

    Article  MathSciNet  Google Scholar 

  17. Khalyavin A.V., Lobanov M.S., Tarannikov Y.V.: On plateaued Boolean functions with the same spectrum support. Sib. Electron. Mat. Izv. 13, 1346–1368 (2016).

    MathSciNet  Google Scholar 

  18. Langevin P., Leander G.: Counting all bent functions in dimension eight 99270589265934370305785861242880. Des. Codes Cryptogr. 59(1–3), 193–205 (2011).

    Article  MathSciNet  Google Scholar 

  19. Luria Z.: New bounds on the number of \(n\)-queens configurations. arxiv:1705.05225.

  20. McFarland R.L.: A family of difference sets in non-cyclic groups. J. Comb. Theory Ser. A 15, 1–10 (1973).

    Article  MathSciNet  Google Scholar 

  21. Mesnager S.: Bent Functions. Fundamentals and Results. Springer, Cham (2016).

    Book  Google Scholar 

  22. Potapov V.N.: A lower bound on the number of Boolean functions with median correlation immunity. In: Proceedings of XVI International Symposium “Problems of Redundancy in Information and Control Systems”, pp. 45–46. IEEE, Moscow, Russia (2019).

  23. Potapov V.N.: An Upper Bound on the Number of Bent Functions. In Proceedings of XVII International Symposium “Problems of Redundancy in Information and Control Systems”, pp. 95–96. IEEE, Moscow, Russia (2021).

  24. Taranenko A.A.: On the numbers of 1-factors and 1-factorizations of hypergraphs. Discrete Math. 340(4), 753–762 (2017).

    Article  MathSciNet  Google Scholar 

  25. Taranenko A.A.: Transversals, plexes, and multiplexes in iterated quasigroups. Electron. J. Comb. 25(4), 4.30 (2018).

    Article  MathSciNet  Google Scholar 

  26. Tarannikov Y.V.: On the values of the affine rank of the support of a spectrum of a plateaued function. Diskret. Mat. 18(3), 120–137 (2006).

    MathSciNet  Google Scholar 

  27. Tokareva N.: On the number of bent functions from iterative constructions: lower bounds and hypothesis. Adv. Math. Commun. 5(4), 609–621 (2011).

    Article  MathSciNet  Google Scholar 

  28. Tokareva N.: Bent Functions. Elsevier/Academic Press, Amsterdam (2015).

    Book  Google Scholar 

Download references

Acknowledgements

The work of V. N. Potapov and A. A. Taranenko was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Taranenko.

Ethics declarations

Conflict of interest

There are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue: Coding and Cryptography 2022".

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapov, V.N., Taranenko, A.A. & Tarannikov, Y.V. An asymptotic lower bound on the number of bent functions. Des. Codes Cryptogr. 92, 639–651 (2024). https://doi.org/10.1007/s10623-023-01239-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01239-z

Keywords

Mathematics Subject Classification

Navigation