Skip to main content
Log in

A lower bound on permutation codes of distance \(n-1\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A classical recursive construction for mutually orthogonal latin squares (MOLS) is shown to hold more generally for a class of permutation codes of length n and minimum distance \(n-1\). When such codes of length \(p+1\) are included as ingredients, we obtain a general lower bound \(M(n,n-1) \ge n^{1.0797}\) for large n, gaining a small improvement on the guarantee given from MOLS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abel R.J.R.: Existence of five MOLS of orders 18 and 60. J. Comb. Des. 23, 135–139 (2015).

    Article  MathSciNet  Google Scholar 

  2. Bereg S.: Extending permutation arrays for even prime powers. Manuscript (2017).

  3. Bereg S., Morales L., Sudborough I.H.: Extending permutation arrays: improving MOLS bounds. Des. Codes Cryptogr. 83, 661–683 (2017).

    Article  MathSciNet  Google Scholar 

  4. Beth T.: Eine Bemerkung zur Abschätzung der Anzahl orthogonaler lateinischer Quadrate mittels Siebverfahren. Abh. Math. Sem. Univ. Hamburg 53, 284–288 (1983).

    Article  MathSciNet  Google Scholar 

  5. Bierbrauer J., Metsch K.: A bound on permutation codes. Electron. J. Comb. 20, P6, 12 pp. (2013).

  6. Chowla S., Erdős P., Strauss E.G.: On the maximal number of pairwise orthogonal latin squres of a given order. Can. J. Math. 12, 204–208 (1960).

    Article  Google Scholar 

  7. Chu W., Colbourn C.J., Dukes P.J.: Permutation codes for powerline communication. Des. Codes Cryptogr. 32, 51–64 (2004).

    Article  MathSciNet  Google Scholar 

  8. Colbourn C.J., Dinitz J.H.: Making the MOLS Table. Computational and Constructive Design Theory. Mathematics Application, vol. 67–134, p. 368. Kluwer, Dordrecht (1996).

    Chapter  Google Scholar 

  9. Colbourn C.J., Kløve T., Ling A.C.H.: Permutation arrays for powerline communication and mutually orthogonal Latin squares. IEEE Trans. Inf. Theory 50, 1289–1291 (2004).

    Article  MathSciNet  Google Scholar 

  10. Deza M., Vanstone S.A.: Bounds for permutation arrays. J. Stat. Plan. Inference 2, 197–209 (1978).

    Article  MathSciNet  Google Scholar 

  11. Ding C., Fu F.-W., Kløve T., Wei V.K.-W.: Constructions of permutation arrays. IEEE Trans. Inf. Theory 48, 977–980 (2002).

    Article  MathSciNet  Google Scholar 

  12. Frankl P., Deza M.: On the maximum number of permutations with given maximal or minimal distance. J. Comb. Theory A 22, 352–360 (1977).

    Article  MathSciNet  Google Scholar 

  13. Huczynska S.: Powerline communication and the 36 officers problem. Philos. Trans. R. Soc. Lond. A 364, 3199–3214 (2006).

    Article  MathSciNet  Google Scholar 

  14. Iwaniec H., van de Lune J., te Riele H.J.J.: The limits of Buchstab’s iteration sieve. Nederl. Akad. Wetensch. Indag. Math. 42, 409–417 (1980).

    Article  MathSciNet  Google Scholar 

  15. Janiszczak I., Staszewski R.: An Improved Bound for Permutation Arrays of Length 10. Preprint 4. Institute for Experimental Mathematics, University Duisburg-Essen, Duisburg (2008).

    Google Scholar 

  16. Janiszczak I., Staszewski R.: Isometry invariant permutation codes and mutually orthogonal Latin squares. arXiv:1812.06886.

  17. Janiszczak I., Lempken W., Östergård P.R.J., Staszewski R.: Permutation codes invariant under isometries. Des. Codes Cryptogr. 75, 497–507 (2015).

    Article  MathSciNet  Google Scholar 

  18. Kløve T.: Classification of permutation codes of length 6 and minimum distance 5. In: Proceedings of the International Symposium on Information Theory Applications, pp. 465–468 (2000).

  19. Montemanni R., Barta J., Smith D.H.: Permutation codes: a new upper bound for M(7,5). In: Yingthawornsuk, T., Adiguzel, O. (eds.) Proceedings of the 2014 International Conference on Informatics and Advanced Computing (ICIAC), pp 1–3. International Academy of Engineers (IA-E) (2014).

  20. Smith D.H., Montemanni R.: A new table of permutation codes. Des. Codes Cryptogr. 63, 241–253 (2012).

    Article  MathSciNet  Google Scholar 

  21. Wilson R.M.: Concerning the number of mutually orthogonal Latin squares. Discret. Math. 9, 181–198 (1974).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referees for careful reading and helpful suggestions which improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Bereg.

Additional information

Communicated by C. J. Colbourn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of the first author is supported in part by NSF Award CCF-1718994. Research of the second author is supported by NSERC Grant 312595–2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bereg, S., Dukes, P.J. A lower bound on permutation codes of distance \(n-1\). Des. Codes Cryptogr. 88, 63–72 (2020). https://doi.org/10.1007/s10623-019-00670-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00670-5

Keywords

Mathematics Subject Classification

Navigation