Skip to main content
Log in

Joint data and key distribution of simple, multiple, and multidimensional linear cryptanalysis test statistic and its impact to data complexity

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The power of a statistical attack is inversely proportional to the number of plaintexts needed to recover information on the encryption key. By analyzing the distribution of the random variables involved in the attack, cryptographers aim to provide a good estimate of the data complexity of the attack. In this paper, we analyze the hypotheses made in simple, multiple, and multidimensional linear attacks that use either non-zero or zero correlations, and provide more accurate estimates of the data complexity of these attacks. This is achieved by taking, for the first time, into consideration the key variance of the statistic for both the right and wrong keys. For the family of linear attacks considered in this paper, we differentiate between the attacks which are performed in the known-plaintext and those in the distinct-known-plaintext model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. With these parameters, the data complexity can not be equal to \(2^{123.2}\) as given in [33].

References

  1. Abdelraheem M.A., Ågren M., Beelen P., Leander G.: On the distribution of linear biases: three instructive examples. In: Safavi-Naini R., Canetti R. (eds.) Proceedings of Advances in Cryptology—CRYPTO 2012—32nd Annual Cryptology Conference, Santa Barbara, CA, 19–23 Aug, 2012. Lecture Notes in Computer Science, vol. 7417, pp. 50–67. Springer, New York (2012).

  2. Aoki K., Ichikawa T., Kanda M., Matsui M., Moriai S., Nakajima J., Tokita T.: Camellia: a 128-bit block cipher suitable for multiple platforms—design and analysis. In: Stinson D.R., Tavares S.E. (eds.) SAC 2000. Lecture Notes in Computer Science, vol. 2012. Springer, New York (2001).

  3. Baignères T., Junod P., Vaudenay S.: How far can we go beyond linear cryptanalysis? In: Advances in Cryptology—ASIACRYPT 2004. Lecture Notes in Computer Science, vol. 3329, pp. 432–450. Springer, New York (2004).

  4. Biham E., Shamir A.: Differential cryptanalysis of DES-like cryptosystems. In: Alfred M., Vanstone S.A. (eds.) CRYPTO. Lecture Notes in Computer Science, vol. 537, pp. 2–21. Springer, New York (1990).

  5. Biryukov A., De Cannière C., Quisquater M.: On multiple linear approximations. In: Franklin M.K. (ed.) Advances in Cryptology—CRYPTO, 2004, 24th Annual International Cryptology Conference, Santa Barbara, CA, August 15–19, 2004. Lecture Notes in Computer Science, vol. 3152, pp. 1–22. Springer (2004).

  6. Blondeau C., Nyberg K.: Links between truncated differential and multidimensional linear properties of block ciphers and underlying attack complexities. In: Oswald E., Nguyen P.Q. (eds.) EUROCRYPT 2014. Lecture Notes in Computer Science, vol. 8441. Springer, New York (2014).

  7. Bogdanov A., Tischhauser E.: On the wrong key randomisation and key equivalence hypotheses in Matsui’s Algorithm 2. In: Shiho M. (ed.) Fast Software Encryption—20th International Workshop, FSE 2013, Singapore, 11–13 Mar, 2013. Revised Selected Papers. Lecture Notes in Computer Science, vol. 8424, pp. 19–38. Springer, New York (2013).

  8. Bogdanov A., Wang M.: Zero correlation linear cryptanalysis with reduced data complexity. In: Canteaut A. (ed.) FSE. Lecture Notes in Computer Science, vol. 7549, pp. 29–48. Springer, New York (2012).

  9. Bogdanov A., Knudsen L.R., Leander G., Paar C., Poschmann A., Robshaw M.J., Seurin Y., Vikkelsoe C.: PRESENT: an ultra-lightweight block cipher. In: Paillier P., Verbauwhede I. (eds.) CHES. Lecture Notes in Computer Science, vol. 4727, pp. 450–466. Springer, New York (2007).

  10. Bogdanov A., Leander G., Nyberg K., Wang M.: Integral and multidimensional linear distinguishers with correlation zero. In: Wang X., Sako K. (eds.) ASIACRYPT. Lecture Notes in Computer Science, vol. 7658, pp.244–261. Springer, New York (2012).

  11. Bogdanov A., Boura C., Rijmen V., Wang M., Wen L., Zhao J.: Key difference invariant bias in block ciphers. In: Sako K., Sarkar P. (eds.) ASIACRYPT 2013. Lecture Notes in Computer Science, vol. 8269, pp. 357–376. Springer, New York (2013).

  12. Bogdanov A., Geng H., Wang M., Wen L., Collard B.: Zero-correlation linear cryptanalysis with FFT and improved attacks on ISO standards camellia and CLEFIA. In: SAC’13. Lecture Notes in Computer Science. Springer, New York (2014).

  13. Boura C., Naya-Plasencia M., Suder V.: Scrutinizing and improving impossible differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In: Sarkar P., Iwata T., (eds.) ASIACRYPT 2014. Lecture Notes in Computer Science, vol. 8873, pp.179–199. Springer, New York (2014).

  14. Canteaut A., Carlet C., Charpin P., Fontaine C.: On cryptographic properties of the cosets of r(1, m). IEEE Trans. 47(4), 1494–1513 (2001).

    MATH  MathSciNet  Google Scholar 

  15. Daemen J., Rijmen V.: Probability distributions of correlation and differentials in block ciphers. IACR Cryptology ePrint Archive Report 2005/212 (2006).

  16. Daemen J., Rijmen V.: Probability distributions of correlation and differentials in block ciphers. J. Math. Cryptol. 1(3), 221–242 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  17. Daemen J., Govaerts R., Vandewalle J.: Correlation matrices. In: Fast Software Encryption—FSE 1994. Lecture Notes in Computer Science, vol. 1008, pp.275–285. Springer, New York (1995).

  18. Hermelin M., Cho J.Y., Nyberg K.: Multidimensional extension of Matsui’s Algorithm 2. In: FSE. Lecture Notes in Computer Science, vol. 5665, pp. 209–227. Springer, New York (2009).

  19. Huang J., Vaudenay S., Lai X., Nyberg K.: Capacity and data complexity in multidimensional linear attack. In: Gennaro R., Robshaw M. (eds.) Advances in Cryptology—CRYPTO 2015—35th Annual Cryptology Conference, Santa Barbara, CA, 16–20 Aug, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9215, pp. 141–160. Springer, New York (2015).

  20. Knudsen L.R.: Truncated and higher order differentials. In: Preneel B. (ed.) Proceedings of Fast Software Encryption: Second International Workshop. Leuven, Belgium, 14–16 Dec, 1994. Lecture Notes in Computer Science, vol. 1008, pp.196–211. Springer, New York (1994).

  21. Leander G.: Small scale variants of the block cipher PRESENT. IACR Cryptology ePrint Archive 2010, 143 (2010).

  22. Leander G.: On linear hulls, statistical saturation attacks, PRESENT and a cryptanalysis of PUFFIN. In Paterson K.G. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 6632, pp. 303–322. Springer, New York (2011).

  23. Linial N., Mansour Y., Nisan N.: Constant depth circuits, fourier transform, and learnability. J. ACM 40(3), 607–620 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  24. Matsui M.: Linear cryptanalysis method for DES cipher. In: Helleseth T. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 765, pp. 386–397. Springer, New York (1993).

  25. McLaughlin J., Clark J.A.: Filtered nonlinear cryptanalysis of reduced-round serpent, and the wrong-key randomization hypothesis. In: Proceedings of Cryptography and Coding—14th IMA International Conference, IMACC 2013, Oxford, 17–19 Dec, 2013. Lecture Notes in Computer Science, vol. 8308, pp.120–140. Springer, New York (2013).

  26. Murphy S.: The effectiveness of the linear hull effect. Technical Report, Royal Holloway College London (2009).

  27. Nyberg K.:. Linear approximation of block ciphers. In: Advances in Cryptology—EUROCRYPT’94. Lecture Notes in Computer Science, vol. 950, pp. 439–444. Springer, New York (1995).

  28. Röck A., Nyberg K.: Generalization of Matsui’s Algorithm 1 to linear hull for key-alternating block ciphers. Des. Codes Cryptogr. 66(1–3), 175–193 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  29. Selçuk A.A.: On probability of success in linear and differential cryptanalysis. J. Cryptol. 21(1), 131–147 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  30. Shirai T., Shibutani K., Akishita T., Moriai S., Iwata T.: The 128-bit block cipher CLEFIA (extended abstract). In: Biryukov A. (ed.) FSE. Lecture Notes in Computer Science, vol. 4593, pp. 181–195. Springer, New York (2007).

  31. Soleimany H., Nyberg K.: Zero-correlation linear cryptanalysis of reduced-round LBlock. Des. Codes Cryptogr. 73(2), 683–698 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  32. Weisstein E.: Binomial distribution. Wolfram MathWorld (2016).

  33. Wen L., Wang M., Bogdanov A., Chen H.: General application of FFT in cryptanalysis and improved attack on CAST-256. In: Willi M., Debdeep M. (eds.) INDOCRYPT. Lecture Notes in Computer Science, vol. 8885, pp. 161–176. Springer, New York (2014).

  34. Wen L., Wang M., Zhao J.: Related-key impossible differential attack on reduced-round LBlock. J. Comput. Sci. Technol. 29(1), 165–176 (2014).

    Article  Google Scholar 

  35. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Javier L., Gene T. (eds.) ACNS. Lecture Notes in Computer Science, vol. 6715, pp. 327–344 (2011).

Download references

Acknowledgments

We wish to thank the anonymous reviewers for insightful comments that were very helpful in improving the presentation of this paper. In particular, we followed their advice to include more tutorial type material on linear key-recovery attacks and elaborate the case of a single linear approximation in detail.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Blondeau.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blondeau, C., Nyberg, K. Joint data and key distribution of simple, multiple, and multidimensional linear cryptanalysis test statistic and its impact to data complexity. Des. Codes Cryptogr. 82, 319–349 (2017). https://doi.org/10.1007/s10623-016-0268-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-016-0268-6

Keywords

Mathematics Subject Classification

Navigation