Skip to main content

Advertisement

Log in

Metformin Increases the Response of Cholangiocarcinoma Cells to Gemcitabine by Suppressing Pyruvate Kinase M2 to Activate Mitochondrial Apoptosis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Cholangiocarcinoma (CCA) is a malignant tumor with a high mortality rate. Resistance to chemotherapy remains a major challenge related to cancer treatment, and increasing the sensitivity of cancer cells to therapeutic drugs is a major focus of cancer treatment.

Aims

We purposed to explore the role of Metformin in CCA involved in chemotherapeutic sensitivity and Pyruvate kinase M2 (PKM2) through regulating mitochondrial apoptosis in the present study.

Methods

CCA cell lines of HCC9810 and RBE were treated with Metformin companied with antagonists or agonists of PKM2, cells sensitivity to Gemcitabine, cell migration and invasion along with apoptosis, which is mediated by JC-1 and LDH were assayed.

Results

Our results indicated that Metformin and Gemcitabine exhibit synergistic effect on inhibition of cholangiocarcinoma cell viability, cell migration and invasion as well as promotion apoptosis of cholangiocarcinoma cells. In vivo, Metformin combined with Gemcitabine has cooperation in inhibiting the growth of cholangiocarcinoma cell-derived tumors. Moreover, Metformin and Gemcitabine inhibited expression of PKM2 and PDHB in HCC9810 and RBE.

Conclusion

Our study suggested that Metformin may increase the response of cholangiocarcinoma cells to Gemcitabine by suppressing PKM2 to activate mitochondrial apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018;15:95–111. https://doi.org/10.1038/nrclinonc.2017.157.

    Article  CAS  PubMed  Google Scholar 

  2. Fouassier L, Marzioni M, Afonso MB et al. Signalling networks in cholangiocarcinoma: Molecular pathogenesis, targeted therapies and drug resistance. Liver Int 2019;39:43–62. https://doi.org/10.1111/liv.14102.

    Article  PubMed  Google Scholar 

  3. Han T, Kang D, Ji D et al. How does cancer cell metabolism affect tumor migration and invasion? Cell Adh Migr 2013;7:395–403. https://doi.org/10.4161/cam.26345.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bensinger SJ, Christofk HR. New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol 2012;23:352–361. https://doi.org/10.1016/j.semcdb.2012.02.003.

    Article  CAS  PubMed  Google Scholar 

  5. Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 2011;43:969–980. https://doi.org/10.1016/j.biocel.2010.02.005.

    Article  CAS  PubMed  Google Scholar 

  6. Mazurek S. Pyruvate kinase type M2: a key regulator within the tumour metabolome and a tool for metabolic profiling of tumours. Ernst Schering Found Symp Proc 2007;4:99–124. https://doi.org/10.1007/2789_2008_091.

    Article  CAS  Google Scholar 

  7. Cheng C, Xie Z, Li Y, Wang J, Qin C, Zhang Y. PTBP1 knockdown overcomes the resistance to vincristine and oxaliplatin in drug-resistant colon cancer cells through regulation of glycolysis. Biomed Pharmacother 2018;108:194–200. https://doi.org/10.1016/j.biopha.2018.09.031.

    Article  CAS  PubMed  Google Scholar 

  8. Tian S, Li P, Sheng S, Jin X. Upregulation of pyruvate kinase M2 expression by fatty acid synthase contributes to gemcitabine resistance in pancreatic cancer. Oncol Lett 2018;15:2211–2217. https://doi.org/10.3892/ol.2017.7598.

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Hao F, Nan Y et al. PKM2 Inhibitor Shikonin Overcomes the Cisplatin Resistance in Bladder Cancer by Inducing Necroptosis. Int J Biol Sci 2018;14:1883–1891. https://doi.org/10.7150/ijbs.27854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saunier E, Benelli C, Bortoli S. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents. International journal of cancer 2016;138:809–817. https://doi.org/10.1002/ijc.29564.

    Article  CAS  PubMed  Google Scholar 

  11. Wei S, Ma W. MiR-370 functions as oncogene in melanoma by direct targeting pyruvate dehydrogenase B. Biomed Pharmacother 2017;90:278–286. https://doi.org/10.1016/j.biopha.2017.03.068.

    Article  CAS  PubMed  Google Scholar 

  12. Xiaohong Z, Lichun F, Na X, Kejian Z, Xiaolan X, Shaosheng W. MiR-203 promotes the growth and migration of ovarian cancer cells by enhancing glycolytic pathway. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2016;37:14989–14997. https://doi.org/10.1007/s13277-016-5415-1.

    Article  CAS  PubMed  Google Scholar 

  13. Xu DX, Guo JJ, Zhu GY, Wu HJ, Zhang QS, Cui T. MiR-363-3p modulates cell growth and invasion in glioma by directly targeting pyruvate dehydrogenase B. European review for medical and pharmacological sciences 2018;22:5230–5239. https://doi.org/10.26355/eurrev_201808_15721.

    Article  PubMed  Google Scholar 

  14. Tang H, Luo X, Li J et al. Pyruvate dehydrogenase B promoted the growth and migration of the nasopharyngeal carcinoma cells. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2016;37:10563–10569. https://doi.org/10.1007/s13277-016-4922-4.

    Article  CAS  PubMed  Google Scholar 

  15. Podhorecka M, Ibanez B, Dmoszynska A. Metformin - its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw (Online) 2017;71:170–175. https://doi.org/10.5604/01.3001.0010.3801.

    Article  PubMed  Google Scholar 

  16. Ma SJ, Zheng YX, Zhou PC, Xiao YN, Tan HZ. Metformin use improves survival of diabetic liver cancer patients: systematic review and meta-analysis. Oncotarget 2016;7:66202–66211. https://doi.org/10.18632/oncotarget.11033.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Heckman-Stoddard BM, DeCensi A, Sahasrabuddhe VV, Ford LG. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia 2017;60:1639–1647. https://doi.org/10.1007/s00125-017-4372-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pollak MN. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov 2012;2:778–790. https://doi.org/10.1158/2159-8290.CD-12-0263.

    Article  CAS  PubMed  Google Scholar 

  19. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 2017;60:1577–1585. https://doi.org/10.1007/s00125-017-4342-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han G, Gong H, Wang Y, Guo S, Liu K. AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell. Cancer Biol Ther 2015;16:77–87. https://doi.org/10.4161/15384047.2014.987021.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Bai F, Liu N et al. Metformin improves lipid metabolism and reverses the Warburg effect in a canine model of chronic atrial fibrillation. BMC Cardiovasc Disord 2020;20:50. https://doi.org/10.1186/s12872-020-01359-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu C, Liu Q, Yan A et al. Metformin revert insulin-induced oxaliplatin resistance by activating mitochondrial apoptosis pathway in human colon cancer HCT116 cells. Cancer Med. 2020. https://doi.org/10.1002/cam4.3029.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Qian Z, Hu W, Lv Z et al. PKM2 upregulation promotes malignancy and indicates poor prognosis for intrahepatic cholangiocarcinoma. Clin Res Hepatol Gastroenterol 2020;44:162–173. https://doi.org/10.1016/j.clinre.2019.06.008.

    Article  CAS  PubMed  Google Scholar 

  24. Yu G, Yu W, Jin G et al. PKM2 regulates neural invasion of and predicts poor prognosis for human hilar cholangiocarcinoma. Mol Cancer 2015;14:193. https://doi.org/10.1186/s12943-015-0462-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pustylnikov S, Costabile F, Beghi S, Facciabene A. Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Transl Res 2018;202:35–51. https://doi.org/10.1016/j.trsl.2018.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang L, Shi Y, Ju P et al. Silencing of diphthamide synthesis 3 (Dph3) reduces metastasis of murine melanoma. PloS one 2012;7:e49988. https://doi.org/10.1371/journal.pone.0049988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bergquist A, von Seth E. Epidemiology of cholangiocarcinoma. Best practice & research Clinical gastroenterology 2015;29:221–232. https://doi.org/10.1016/j.bpg.2015.02.003.

    Article  Google Scholar 

  28. Jing YY, Cai FF, Zhang L et al. Epigenetic regulation of the Warburg effect by H2B monoubiquitination. Cell death and differentiation 2020;27:1660–1676. https://doi.org/10.1038/s41418-019-0450-2.

    Article  CAS  PubMed  Google Scholar 

  29. Ferguson EC, Rathmell JC. New roles for pyruvate kinase M2: working out the Warburg effect. Trends in biochemical sciences 2008;33:359–362. https://doi.org/10.1016/j.tibs.2008.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mack SC, Agnihotri S, Bertrand KC et al. Spinal Myxopapillary Ependymomas Demonstrate a Warburg Phenotype. Clinical cancer research : an official journal of the American Association for Cancer Research 2015;21:3750–3758. https://doi.org/10.1158/1078-0432.ccr-14-2650.

    Article  CAS  PubMed  Google Scholar 

  31. Dong Z, Cui H. Epigenetic modulation of metabolism in glioblastoma. Seminars in cancer biology 2019;57:45–51. https://doi.org/10.1016/j.semcancer.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  32. Venneti S, Thompson CB. Metabolic modulation of epigenetics in gliomas. Brain pathology (Zurich, Switzerland) 2013;23:217–221. https://doi.org/10.1111/bpa.12022.

    Article  CAS  PubMed  Google Scholar 

  33. Wykosky J, Fenton T, Furnari F, Cavenee WK. Therapeutic targeting of epidermal growth factor receptor in human cancer: successes and limitations. Chinese journal of cancer 2011;30:5–12. https://doi.org/10.5732/cjc.010.10542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008;452:230–233. https://doi.org/10.1038/nature06734.

    Article  CAS  PubMed  Google Scholar 

  35. Yang W, Xia Y, Ji H et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 2011;480:118–122. https://doi.org/10.1038/nature10598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vidali S, Aminzadeh S, Lambert B et al. Mitochondria: The ketogenic diet–A metabolism-based therapy. Int J Biochem Cell Biol 2015;63:55–59. https://doi.org/10.1016/j.biocel.2015.01.022.

    Article  CAS  PubMed  Google Scholar 

  37. Wang X, Lai S, Ye Y et al. Conditional knockout of pyruvate dehydrogenase in mouse pancreatic β-cells causes morphological and functional changes. Molecular medicine reports 2020;21:1717–1726. https://doi.org/10.3892/mmr.2020.10993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Jiaxing Science and Technology Plan Project (No. 2018AY32044).

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

HD: Conceptualization, Methodology. XQ: Data curation, Writing- Original draft preparation. YZ: Software, Writing- Reviewing and Editing. PY and WY: Conceptualization, Methodology.

Corresponding author

Correspondence to Ping Yang.

Ethics declarations

Conflicts of interest

All the authors declared that they have not any conflicts of interests.

Ethical approval

All the animal experiments were performed according to the animal ethics committee of Armed Police Coast Guard Corps Hospital with ethical approvement (202016).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Qian, X., Zhang, Y. et al. Metformin Increases the Response of Cholangiocarcinoma Cells to Gemcitabine by Suppressing Pyruvate Kinase M2 to Activate Mitochondrial Apoptosis. Dig Dis Sci 69, 476–490 (2024). https://doi.org/10.1007/s10620-023-08210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-023-08210-x

Keywords

Navigation