Skip to main content

Advertisement

Log in

E2F5 Targeted by Let-7d-5p Facilitates Cell Proliferation, Metastasis and Immune Escape in Gallbladder Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Gallbladder cancer (GBC) remains a serious cause of cancer-related mortality across the globe. E2F5 has been identified to as a known oncogene in various cancers. However, the special functions of E2F5 have not been investigated in GBC.

Aims

To explore the regulatory functions of E2F5 and its related molecular regulatory mechanism in GBC progression.

Methods

The expression of genes were examined through qRT-PCR, western blot and IHC assay. The cell proliferation was assessed through CCK-8 and EDU assays. The cytotoxicity was tested through LDH assay. The percentage of CD8+ T cells and cell apoptosis were evaluated through flow cytometry. The binding ability was detected through luciferase reporter assay. The tumor growth was assessed through in vivo assays.

Results

In this study, it was demonstrated that E2F5 expression was evaluated in GBC, and resulted into poor prognosis. Bioinformatics analysis revealed E2F5 as a target for let-7d-5p, which when overexpressed, suppressed the metastasis and proliferation of GBC through the downregulation of E2F5. It was discovered that E2F5 activates JAK2/STAT3 signaling which is suppressed by let-7d-5p, implicating this pathway as one of the effectors of the oncogenic effects of ESF5 in GBC. E2F5 had been confirmed to aggravate tumor growth in vivo.

Conclusion

E2F5 targeted by let-7d-5p facilitated cell proliferation, metastasis and immune escape in GBC through the JAK2/STAT3 pathway.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Misra S, Chaturvedi A, Misra NC, Sharma ID. Carcinoma of the gallbladder. Lancet Oncol 2003;4:167–176.

    PubMed  Google Scholar 

  2. Andia ME, Hsing AW, Andreotti G, Ferreccio C. Geographic variation of gallbladder cancer mortality and risk factors in Chile: a population-based ecologic study. Int J Cancer 2008;123:1411–1416.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ertel AE, Bentrem D, Abbott DE. Gall bladder cancer. Cancer Treat Res 2016;168:101–120.

    PubMed  Google Scholar 

  4. Schmidt MA, Marcano-Bonilla L, Roberts LR. Gallbladder cancer: epidemiology and genetic risk associations. Chin Clin Oncol 2019;8:31.

    PubMed  Google Scholar 

  5. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.

    PubMed  Google Scholar 

  6. Hundal R, Shaffer EA. Gallbladder cancer: epidemiology and outcome. Clin Epidemiol 2014;6:99–109.

    PubMed  PubMed Central  Google Scholar 

  7. Pilgrim CH, Groeschl RT, Christians KK, Gamblin TC. Modern perspectives on factors predisposing to the development of gallbladder cancer. HPB (Oxford) 2013;15:839–844.

    PubMed  Google Scholar 

  8. Iyer P, Barreto SG, Sahoo B, Chandrani P, Ramadwar MR, Shrikhande SV et al. Non-typhoidal Salmonella DNA traces in gallbladder cancer. Infect Agent Cancer 2016;11:12.

    PubMed  PubMed Central  Google Scholar 

  9. Sasatomi E, Tokunaga O, Miyazaki K. Precancerous conditions of gallbladder carcinoma: overview of histopathologic characteristics and molecular genetic findings. J Hepatobiliary Pancreat Surg 2000;7:556–567.

    CAS  PubMed  Google Scholar 

  10. Wistuba II, Tang M, Maitra A, Alvarez H, Troncoso P, Pimentel F et al. Genome-wide allelotyping analysis reveals multiple sites of allelic loss in gallbladder carcinoma. Cancer Res 2001;61:3795–3800.

    CAS  PubMed  Google Scholar 

  11. Rashid A. Cellular and molecular biology of biliary tract cancers. Surg Oncol Clin N Am 2002;11:995–1009.

    PubMed  Google Scholar 

  12. Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 2002;3:11–20.

    CAS  PubMed  Google Scholar 

  13. Attwooll C, Lazzerini Denchi E, Helin K. The E2F family: specific functions and overlapping interests. Embo j 2004;23:4709–4716.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen HZ, Tsai SY, Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 2009;9:785–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Xie H, Kang Y, Wang S, Zheng P, Chen Z, Roy S et al. E2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish. PLoS Genet 2020;16:e1008655.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishimoto T, Shiozaki A, Ichikawa D, Fujiwara H, Konishi H, Komatsu S et al. E2F5 as an independent prognostic factor in esophageal squamous cell carcinoma. Anticancer Res 2013;33:5415–5420.

    PubMed  Google Scholar 

  17. Li L, Liu J, Huang W. E2F5 promotes proliferation and invasion of gastric cancer through directly upregulating UBE2T transcription. Dig Liver Dis 2022;54:937–945.

    CAS  PubMed  Google Scholar 

  18. Malgundkar SH, Burney I, Al Moundhri M, Al Kalbani M, Lakhtakia R, Okamoto A et al. E2F5 promotes the malignancy of ovarian cancer via the regulation of hippo and Wnt pathways. Genet Test Mol Biomark 2021;25:179–186.

    CAS  Google Scholar 

  19. Inagaki Y, Wu D, Fujiwara K, Ishizuka Y, Oguni A, Tokunaga T et al. Knockdown of E2F5 induces cell death via the TP53-dependent pathway in breast cancer cells carrying wild-type TP53. Oncol Rep 2020;44:2241–2252.

    CAS  PubMed  Google Scholar 

  20. Karmakar D, Maity J, Mondal P, Shyam Chowdhury P, Sikdar N, Karmakar P et al. E2F5 promotes prostate cancer cell migration and invasion through regulation of TFPI2, MMP-2 and MMP-9. Carcinogenesis 2020;41:1767–1780.

    CAS  PubMed  Google Scholar 

  21. Abrahamsson A, Dabrosin C. Tissue specific expression of extracellular microRNA in human breast cancers and normal human breast tissue in vivo. Oncotarget 2015;6:22959–22969.

    PubMed  PubMed Central  Google Scholar 

  22. Poursadegh Zonouzi AA, Nejatizadeh A, Rahmati-Yamchi M, Fardmanesh H, Shakerizadeh S, Poursadegh Zonouzi A et al. Dysregulated expression of Dicer in invasive ductal breast carcinoma. Med Oncol 2015;32:203.

    PubMed  Google Scholar 

  23. Long J, Ou C, Xia H, Zhu Y, Liu D. MiR-503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression. Tumour Biol 2015;36:8697–8702.

    CAS  PubMed  Google Scholar 

  24. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Martignetti L, Tesson B, Almeida A, Zinovyev A, Tucker GC, Dubois T et al. Detection of miRNA regulatory effect on triple negative breast cancer transcriptome. BMC Genomics 2015;16:S4.

    PubMed  PubMed Central  Google Scholar 

  26. Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 2010;11:252–263.

    CAS  PubMed  Google Scholar 

  27. Yang MH, Yu J, Jiang DM, Li WL, Wang S, Ding YQ. microRNA-182 targets special AT-rich sequence-binding protein 2 to promote colorectal cancer proliferation and metastasis. J Transl Med 2014;12:109.

    PubMed  PubMed Central  Google Scholar 

  28. Chandra V, Kim JJ, Mittal B, Rai R. MicroRNA aberrations: An emerging field for gallbladder cancer management. World J Gastroenterol 2016;22:1787–1799.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao M, Ang L, Huang J, Wang J. MicroRNAs regulate the epithelial-mesenchymal transition and influence breast cancer invasion and metastasis. Tumour Biol 2017;39:1010428317691682.

    PubMed  Google Scholar 

  30. Li S, Liu F, Xu L, Li C, Yang X, Guo B et al. Wnt/β-catenin signaling axis is required for TFEB-mediated gastric cancer metastasis and epithelial-mesenchymal transition. Mol Cancer Res 2020;18:1650–1659.

    CAS  PubMed  Google Scholar 

  31. Sun HD. MicroRNA-195-5p inhibits malignant progression of gallbladder cancer by regulating Wnt3a. Eur Rev Med Pharmacol Sci 2021;25:7635–7642.

    PubMed  Google Scholar 

  32. Choo KB, Soon YL, Nguyen PN, Hiew MS, Huang CJ. MicroRNA-5p and -3p co-expression and cross-targeting in colon cancer cells. J Biomed Sci 2014;21:95.

    PubMed  PubMed Central  Google Scholar 

  33. Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 2009;8:843–852.

    CAS  PubMed  Google Scholar 

  34. Koh W, Sheng CT, Tan B, Lee QY, Kuznetsov V, Kiang LS et al. Analysis of deep sequencing microRNA expression profile from human embryonic stem cells derived mesenchymal stem cells reveals possible role of let-7 microRNA family in downstream targeting of hepatic nuclear factor 4 alpha. BMC Genomics 2010;11:S6.

    PubMed  PubMed Central  Google Scholar 

  35. Coskun M, Bjerrum JT, Seidelin JB, Troelsen JT, Olsen J, Nielsen OH. miR-20b, miR-98, miR-125b-1*, and let-7e* as new potential diagnostic biomarkers in ulcerative colitis. World J Gastroenterol 2013;19:4289–4299.

    PubMed  PubMed Central  Google Scholar 

  36. Wu L, Zhao Q, Zhu X, Peng M, Jia C, Wu W et al. A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain Pathol 2010;20:1042–1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Koh YW, Jung SJ, Park CS, Yoon DH, Suh C, Huh J. LGALS3 as a prognostic factor for classical Hodgkin’s lymphoma. Mod Pathol 2014;27:1338–1344.

    CAS  PubMed  Google Scholar 

  38. Jain K, Sreenivas V, Velpandian T, Kapil U, Garg PK. Risk factors for gallbladder cancer: a case-control study. Int J Cancer 2013;132:1660–1666.

    CAS  PubMed  Google Scholar 

  39. Polanowska J, Le Cam L, Orsetti B, Vallés H, Fabbrizio E, Fajas L et al. Human E2F5 gene is oncogenic in primary rodent cells and is amplified in human breast tumors. Genes Chromosomes Cancer 2000;28:126–130.

    CAS  PubMed  Google Scholar 

  40. Tian H, Hou L, Xiong YM, Huang JX, Zhang WH, Pan YY et al. miR-132 targeting E2F5 suppresses cell proliferation, invasion, migration in ovarian cancer cells. Am J Transl Res 2016;8:1492–1501.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu H, Fei D, Zong S, Fan Z. MicroRNA-154 inhibits growth and invasion of breast cancer cells through targeting E2F5. Am J Transl Res 2016;8:2620–2630.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin C, Hu Z, Yuan G, Su H, Zeng Y, Guo Z et al. MicroRNA-1179 inhibits the proliferation, migration and invasion of human pancreatic cancer cells by targeting E2F5. Chem Biol Interact 2018;291:65–71.

    CAS  PubMed  Google Scholar 

  43. Barh D, Malhotra R, Ravi B, Sindhurani P. MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr Oncol 2010;17:70–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsunekuni K, Konno M, Asai A, Koseki J, Kobunai T, Takechi T et al. MicroRNA profiles involved in trifluridine resistance. Oncotarget 2017;8:53017–53027.

    PubMed  PubMed Central  Google Scholar 

  45. Fu LX, Lian QW, Pan JD, Xu ZL, Zhou TM, Ye B. JAK2 tyrosine kinase inhibitor AG490 suppresses cell growth and invasion of gallbladder cancer cells via inhibition of JAK2/STAT3 signaling. J Biol Regul Homeost Agents 2017;31:51–58.

    CAS  PubMed  Google Scholar 

  46. Liu Y, Bi T, Yuan F, Gao X, Jia G, Tian Z. S-adenosylmethionine induces apoptosis and cycle arrest of gallbladder carcinoma cells by suppression of JAK2/STAT3 pathways. Naunyn Schmiedebergs Arch Pharmacol 2020;393:2507–2515.

    CAS  PubMed  Google Scholar 

  47. Wang H, Zhan M, Liu Q, Wang J. Glycochenodeoxycholate promotes the metastasis of gallbladder cancer cells by inducing epithelial to mesenchymal transition via activation of SOCS3/JAK2/STAT3 signaling pathway. J Cell Physiol 2020;235:1615–1623.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the China State Railway Group Co., Ltd. (J2022Z615).

Author information

Authors and Affiliations

Authors

Contributions

LC, SYG wrote the manuscript, DFZ, XYL, JFC collected and analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianfei Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig.S1 Knockdown or overexpression of E2F5 has no effects on the other members of the E2F family. A

The protein expressions of E2F1, E2F2, E2F6, E2F8 were examined after silencing E2F5 through WB. The other isoforms of E2F were not affected through downregulation via siRNA. B The protein expressions of E2F1, E2F2, E2F6, E2F8 were tested after overexpressing E2F5 through WB. The other isoforms of E2F were not affected after E2F5 overexpression. All the data are from three independent experiments (JPG 1854 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Guo, S., Zhang, D. et al. E2F5 Targeted by Let-7d-5p Facilitates Cell Proliferation, Metastasis and Immune Escape in Gallbladder Cancer. Dig Dis Sci 69, 463–475 (2024). https://doi.org/10.1007/s10620-023-08209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-023-08209-4

Keywords

Navigation