Skip to main content

Advertisement

Log in

Knockdown of Circ_0003506 Impedes Radioresistance, Cell Growth, Migration and Invasion in Gastric Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Radioresistance is a major obstacle for clinical treatment of gastric cancer (GC). has_circ_0003506 (circ_0003506) was reported as an oncogenic factor in GC, but its effect on radioresistant GC is unclear.

Aims

This study aimed to explore the role of circ_0003506 in radioresistance and regulatory mechanism.

Methods

The expression detection was performed by real-time polymerase chain reaction. Cell survival was analyzed by colony formation assay. Cell proliferation was measured by Cell Counting Kit-8 assay and colony formation assay. Cell migration and invasion were examined using transwell assay. Cell apoptosis was assessed by flow cytometry. The target binding was confirmed via dual-luciferase reporter assay. The protein level was determined through western blot. Animal assay was performed for the functional exploration of circ_0003506 on radiosensitivity in vivo.

Results

Circ_0003506 was upregulated in radioresistant GC cells. Downregulation of circ_0003506 inhibited radioresistance to repress proliferation, migration and invasion but increase apoptosis in radioresistant GC cells. Circ_0003506 was a sponge of miR-1256. The effects of si-circ_0003506 on radioresistant GC cells were reverted by miR-1256 inhibitor. MiR-1256 suppressed tumor progression in radioresistant GC cells by downregulating bone morphogenetic protein type 2 receptor. Circ_0003506 regulated the level of bone morphogenetic protein type 2 receptor by targeting miR-1256. Downregulating circ_0003506 increased radiosensitivity of GC in vivo via regulating miR-1256 and bone morphogenetic protein type 2 receptor.

Conclusion

Knockdown of circ_0003506 suppressed radioresistance in GC through the regulation of miR-1256/bone morphogenetic protein type 2 receptor axis. Circ_0003506 might be a therapeutic target in radiotherapy of GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet 2020;396:635–648. https://doi.org/10.1016/S0140-6736(20)31288-5.

    Article  CAS  Google Scholar 

  2. Lyons K, Le LC, Pham YT et al. Gastric cancer: epidemiology, biology, and prevention: a mini review. Eur J Cancer Prev 2019;28:397–412. https://doi.org/10.1097/CEJ.0000000000000480.

    Article  Google Scholar 

  3. Zhang N, Fei Q, Gu J, Yin L, He X. Progress of preoperative and postoperative radiotherapy in gastric cancer. World J Surg Oncol 2018;16:187. https://doi.org/10.1186/s12957-018-1490-7.

    Article  CAS  Google Scholar 

  4. Tey J, Zheng H, Soon YY et al. Palliative radiotherapy in symptomatic locally advanced gastric cancer: a phase II trial. Cancer Med 2019;8:1447–1458. https://doi.org/10.1002/cam4.2021.

    Article  Google Scholar 

  5. Zhang X, Xie K, Zhou H et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer 2020;19:47. https://doi.org/10.1186/s12943-020-01171-z.

    Article  CAS  Google Scholar 

  6. Sah BK, Zhang B, Zhang H et al. Neoadjuvant FLOT versus SOX phase II randomized clinical trial for patients with locally advanced gastric cancer. Nat Commun 2020;11:6093. https://doi.org/10.1038/s41467-020-19965-6.

    Article  CAS  Google Scholar 

  7. Chen B, Huang S. Circular RNA: an emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett 2018;418:41–50. https://doi.org/10.1016/j.canlet.2018.01.011.

    Article  CAS  Google Scholar 

  8. Wei J, Wei W, Xu H et al. Circular RNA hsa_circRNA_102958 may serve as a diagnostic marker for gastric cancer. Cancer Biomark 2020;27:139–145. https://doi.org/10.3233/CBM-182029.

    Article  CAS  Google Scholar 

  9. Zhong S, Wang J, Hou J et al. Circular RNA hsa_circ_0000993 inhibits metastasis of gastric cancer cells. Epigenomics 2018;10:1301–1313. https://doi.org/10.2217/epi-2017-0173.

    Article  CAS  Google Scholar 

  10. Jeyaraman S, Hanif EAM, Ab Mutalib NS, Jamal R, Abu N. Circular RNAs: potential regulators of treatment resistance in human cancers. Front Genet 2019;10:1369. https://doi.org/10.3389/fgene.2019.01369.

    Article  CAS  Google Scholar 

  11. Shao Y, Li F, Liu H. Circ-DONSON facilitates the malignant progression of gastric cancer depending on the regulation of miR-149-5p/LDHA Axis. Biochem Genet. 2021. https://doi.org/10.1007/s10528-021-10120-4.

    Article  Google Scholar 

  12. Lin J, Liao S, Li E et al. circCYFIP2 acts as a sponge of miR-1205 and affects the expression of its target gene E2F1 to regulate gastric cancer metastasis. Mol Ther Nucleic Acids 2020;21:121–132. https://doi.org/10.1016/j.omtn.2020.05.007.

    Article  CAS  Google Scholar 

  13. Lu X, Jin EJ, Cheng X et al. Opposing roles of TGFbeta and BMP signaling in prostate cancer development. Genes Dev 2017;31:2337–2342. https://doi.org/10.1101/gad.307116.117.

    Article  CAS  Google Scholar 

  14. Jiao G, Guo W, Ren T et al. BMPR2 inhibition induced apoptosis and autophagy via destabilization of XIAP in human chondrosarcoma cells. Cell Death Dis 2014;5:e1571. https://doi.org/10.1038/cddis.2014.540.

    Article  CAS  Google Scholar 

  15. Sun Z, Liu C, Jiang WG, Ye L. Deregulated bone morphogenetic proteins and their receptors are associated with disease progression of gastric cancer. Comput Struct Biotechnol J 2020;18:177–188. https://doi.org/10.1016/j.csbj.2019.12.014.

    Article  CAS  Google Scholar 

  16. Peng CW, Yue LX, Zhou YQ et al. miR-100-3p inhibits cell proliferation and induces apoptosis in human gastric cancer through targeting to BMPR2. Cancer Cell Int 2019;19:354. https://doi.org/10.1186/s12935-019-1060-2.

    Article  CAS  Google Scholar 

  17. Tang Q, Hann SS. Biological roles and mechanisms of circular RNA in human cancers. Onco Targets Ther 2020;13:2067–2092. https://doi.org/10.2147/OTT.S233672.

    Article  CAS  Google Scholar 

  18. Liu W, Wan X, Mu Z et al. MiR-1256 suppresses proliferation and migration of non-small cell lung cancer via regulating TCTN1. Oncol Lett 2018;16:1708–1714. https://doi.org/10.3892/ol.2018.8794.

    Article  CAS  Google Scholar 

  19. Wu C, Ma L, Wei H et al. MiR-1256 inhibits cell proliferation and cell cycle progression in papillary thyroid cancer by targeting 5-hydroxy tryptamine receptor 3A. Hum Cell 2020;33:630–640. https://doi.org/10.1007/s13577-020-00325-x.

    Article  CAS  Google Scholar 

  20. Wu L, Liu D, Yang Y. Enhanced expression of circular RNA circ-DCAF6 predicts adverse prognosis and promotes cell progression via sponging miR-1231 and miR-1256 in gastric cancer. Exp Mol Pathol 2019;110:104273. https://doi.org/10.1016/j.yexmp.2019.104273.

    Article  CAS  Google Scholar 

  21. Cai J, Chen Z, Wang J et al. circHECTD1 facilitates glutaminolysis to promote gastric cancer progression by targeting miR-1256 and activating beta-catenin/c-Myc signaling. Cell Death Dis 2019;10:576. https://doi.org/10.1038/s41419-019-1814-8.

    Article  CAS  Google Scholar 

  22. Zhang X, Zhou Y, Mao F et al. lncRNA AFAP1-AS1 promotes triple negative breast cancer cell proliferation and invasion via targeting miR-145 to regulate MTH1 expression. Sci Rep 2020;10:7662. https://doi.org/10.1038/s41598-020-64713-x.

    Article  CAS  Google Scholar 

  23. Wang J, Zhu W, Tao G, Wang W. Circular RNA circ-LRP6 facilitates Myc-driven tumorigenesis in esophageal squamous cell cancer. Bioengineered 2020;11:932–938. https://doi.org/10.1080/21655979.2020.1809922.

    Article  CAS  Google Scholar 

  24. Zhou SY, Chen W, Yang SJ et al. Circular RNA circVAPA regulates breast cancer cell migration and invasion via sponging miR-130a-5p. Epigenomics 2020;12:303–317. https://doi.org/10.2217/epi-2019-0124.

    Article  CAS  Google Scholar 

  25. Du S, Zhang P, Ren W, Yang F, Du C. Circ-ZNF609 accelerates the radioresistance of prostate cancer cells by promoting the glycolytic metabolism through miR-501-3p/HK2 axis. Cancer Manag Res 2020;12:7487–7499. https://doi.org/10.2147/CMAR.S257441.

    Article  CAS  Google Scholar 

  26. Jin Y, Su Z, Sheng H et al. Circ_0086720 knockdown strengthens the radiosensitivity of non-small cell lung cancer via mediating the miR-375/SPIN1 axis. Neoplasma. 2020. https://doi.org/10.4149/neo_2020_200331N333.

    Article  Google Scholar 

  27. Ma Y, Zhang D, Wu H et al. Circular RNA PRKCI silencing represses esophageal cancer progression and elevates cell radiosensitivity through regulating the miR-186-5p/PARP9 axis. Life Sci 2020;259:118168. https://doi.org/10.1016/j.lfs.2020.118168.

    Article  CAS  Google Scholar 

  28. Chen L, Zhou H, Guan Z. CircRNA_000543 knockdown sensitizes nasopharyngeal carcinoma to irradiation by targeting miR-9/platelet-derived growth factor receptor B axis. Biochem Biophys Res Commun 2019;512:786–792. https://doi.org/10.1016/j.bbrc.2019.03.126.

    Article  CAS  Google Scholar 

  29. Jin Y, Yu LL, Zhang B, Liu CF, Chen Y. Circular RNA hsa_circ_0000523 regulates the proliferation and apoptosis of colorectal cancer cells as miRNA sponge. Braz J Med Biol Res 2018;51:e7811. https://doi.org/10.1590/1414-431X20187811.

    Article  CAS  Google Scholar 

  30. Zhu C, Mao X, Zhao H. The circ_VCAN with radioresistance contributes to the carcinogenesis of glioma by regulating microRNA-1183. Medicine (Baltimore) 2020;99:e19171. https://doi.org/10.1097/MD.0000000000019171.

    Article  CAS  Google Scholar 

  31. Wang L, Peng X, Lu X et al. Inhibition of hsa_circ_0001313 (circCCDC66) induction enhances the radio-sensitivity of colon cancer cells via tumor suppressor miR-338-3p: effects of cicr_0001313 on colon cancer radio-sensitivity. Pathol Res Pract 2019;215:689–696. https://doi.org/10.1016/j.prp.2018.12.032.

    Article  CAS  Google Scholar 

  32. Shen YN, Bae IS, Park GH et al. MicroRNA-196b enhances the radiosensitivity of SNU-638 gastric cancer cells by targeting RAD23B. Biomed Pharmacother 2018;105:362–369. https://doi.org/10.1016/j.biopha.2018.05.111.

    Article  CAS  Google Scholar 

  33. Wang C, Qiao C. MicroRNA-190b confers radio-sensitivity through negative regulation of Bcl-2 in gastric cancer cells. Biotechnol Lett 2017;39:485–490. https://doi.org/10.1007/s10529-016-2273-2.

    Article  CAS  Google Scholar 

  34. Shen D, Zhao H, Zeng P et al. Circular RNA hsa_circ_0005556 accelerates gastric cancer progression by sponging miR-4270 to increase MMP19 expression. J Gastric Cancer 2020;20:300–312. https://doi.org/10.5230/jgc.2020.20.e28.

    Article  Google Scholar 

  35. Li B, Jin M, Cao F et al. Hsa_circ_0017639 expression promotes gastric cancer proliferation and metastasis by sponging miR-224-5p and upregulating USP3. Gene 2020;750:144753. https://doi.org/10.1016/j.gene.2020.144753.

    Article  CAS  Google Scholar 

  36. Yu X, Xiao W, Song H et al. CircRNA_100876 sponges miR-136 to promote proliferation and metastasis of gastric cancer by upregulating MIEN1 expression. Gene 2020;748:144678. https://doi.org/10.1016/j.gene.2020.144678.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaonan Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Zhang, J., Song, S. et al. Knockdown of Circ_0003506 Impedes Radioresistance, Cell Growth, Migration and Invasion in Gastric Cancer. Dig Dis Sci 68, 128–137 (2023). https://doi.org/10.1007/s10620-022-07534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-022-07534-4

Keywords

Navigation