Skip to main content

Advertisement

Log in

Oral Microbiota Variation: A Risk Factor for Development and Poor Prognosis of Esophageal Cancer

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Recent studies have shown that oral microbiota play an important role in the esophageal cancer (EC) initiation and progression, suggesting that oral microbiota is a new risk factor for EC. The composition of the microbes inhabiting the oral cavity could be perturbed with continuous factors such as smoking, alcohol consumption, and inflammation. The microbial alteration involves the decrease of beneficial species and the increase of pathogenic species. Experimental evidences suggest a significant role of oral commensal organisms in protecting hosts against EC. By contrast, oral pathogens, especially Porphyromonas gingivalis and Fusobacterium nucleatum, give rise to the risk for developing EC through their pro-inflammatory and pro-tumorigenic activities. The presences of oral dysbiosis, microbial biofilm, and periodontitis in EC patients are found to be associated with invasive cancer phenotypes and poor prognosis. The mechanism of oral bacteria in EC progression is complex, which involves a combination of cytokines, chemokines, oncogenic signaling pathways, cell surface receptors, the degradation of extracellular matrix, and cell apoptosis. From a clinical perspective, good oral hygiene, professional oral care, and rational use of antibiotics bring positive impacts on oral microbial balance, thus helping individuals reduce the risk of EC, inhibiting postoperative complications among EC patients, and improving the efficiency of chemoradiotherapy. However, current oral hygiene practices mainly focus on the oral bacteria-based predictive and preventive purposes. It is still far from implementing microbiota-dependent regulation as a therapy for EC. Further explorations are needed to render oral microbiota a potential target for treating EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yamashita Y, Takeshita T. The oral microbiome and human health. J Oral Sci. 2017;59:201–206.

    Article  CAS  PubMed  Google Scholar 

  2. Sharma N, Bhatia S, Sodhi AS, Batra N. Oral microbiome and health. AIMS Microbiol. 2018;4:42–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zheng W, Tsompana M, Ruscitto A et al. An accurate and efficient experimental approach for characterization of the complex oral microbiota. Microbiome. 2015;3:48.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200:525–540.

    Article  CAS  PubMed  Google Scholar 

  5. Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000;2015:7–17.

    Google Scholar 

  6. Hayes RB, Ahn J, Fan X et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol. 2018;4:358–365.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tsay JJ, Wu BG, Badri MH et al. Airway Microbiota Is Associated with Upregulation of the PI3K Pathway in Lung Cancer. Am J Respir Crit Care Med. 2018;198:1188–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gaiser RA, Halimi A, Alkharaan H et al. Enrichment of oral microbiota in early cystic precursors to invasive pancreatic cancer. Gut. 2019;68:2186–2194.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang L, Liu Y, Zheng HJ, Zhang CP. The oral microbiota may have influence on oral cancer. Front Cell Infect Microbiol. 2020;9:476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sun JH, Li XL, Yin J, Li YH, Hou BX, Zhang Z. A screening method for gastric cancer by oral microbiome detection. Oncol Rep. 2018;39:2217–2224.

    CAS  PubMed  Google Scholar 

  11. Cueva C, Silva M, Pinillos I, Bartolomé B, Moreno-Arribas MV. Interplay between dietary polyphenols and oral and gut microbiota in the development of colorectal cancer. Nutrients. 2020;12:625.

    Article  CAS  PubMed Central  Google Scholar 

  12. Teles FRF, Alawi F, Castilho RM, Wang Y. Association or causation? Exploring the oral microbiome and cancer links. J Dent Res. 2020;99:1411–1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mascitti M, Togni L, Troiano G et al. Beyond head and neck cancer: the relationship between oral microbiota and tumour development in distant organs. Front Cell Infect Microbiol. 2019;9:232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tuominen H, Rautava J. Oral microbiota and cancer development. Pathobiology. 2021;88:116–126.

    Article  CAS  PubMed  Google Scholar 

  15. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  16. Gupta B, Kumar N. Worldwide incidence, mortality and time trends for cancer of the oesophagus. Eur J Cancer Prev. 2017;26:107–118.

    Article  PubMed  Google Scholar 

  17. Uhlenhopp DJ, Then EO, Sunkara T, Gaduputi V. Epidemiology of esophageal cancer: update in global trends, etiology and risk factors. Clin J Gastroenterol. 2020;13:1010–1021.

    Article  PubMed  Google Scholar 

  18. Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154:360–373.

    Article  PubMed  Google Scholar 

  19. Koliarakis I, Messaritakis I, Nikolouzakis TK, Hamilos G, Souglakos J, Tsiaoussis J. Oral bacteria and intestinal dysbiosis in colorectal cancer. Int J Mol Sci. 2019;20:4146.

    Article  PubMed Central  CAS  Google Scholar 

  20. Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun. 2016;469:967–977.

    Article  CAS  PubMed  Google Scholar 

  21. Dewhirst FE, Chen T, Izard J et al. The human oral microbiome. J Bacteriol. 2010;192:5002–5017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aagaard K, Petrosino J, Keitel W et al. The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB J. 2013;27:1012–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Segata N, Haake SK, Mannon P et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012;13:R42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214.

    Article  CAS  Google Scholar 

  25. Mason MR, Nagaraja HN, Camerlengo T, Joshi V, Kumar PS. Deep sequencing identifies ethnicity-specific bacterial signatures in the oral microbiome. PLoS One 2013;8:e77287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol. 2017;8:1162.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Renson A, Jones HE, Beghini F et al. Sociodemographic variation in the oral microbiome. Ann Epidemiol. 2019;35:73-80.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen X, Winckler B, Lu M et al. Oral microbiota and risk for esophageal squamous cell carcinoma in a high-risk area of China. PLoS One. 2015;10:e0143603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wang Q, Rao Y, Guo X et al. Oral microbiome in patients with oesophageal squamous cell carcinoma. Sci Rep. 2019;9:19055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu G, Phillips S, Gail MH et al. The effect of cigarette smoking on the oral and nasal microbiota. Microbiome. 2017;5:3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fan X, Peters BA, Jacobs EJ et al. Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome. 2018;6:59.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu J, Peters BA, Dominianni C et al. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 2016;10:2435–2446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Siqueira WL, Custodio W, McDonald EE. New insights into the composition and functions of the acquired enamel pellicle. J Dent Res. 2012;91:1110–1118.

    Article  CAS  PubMed  Google Scholar 

  34. Chawhuaveang DD, Yu OY, Yin IX, Lam WY, Mei ML, Chu CH. Acquired salivary pellicle and oral diseases: A literature review. J Dent Sci. 2021;16:523–529.

    Article  PubMed  Google Scholar 

  35. Mark Welch JL, Ramírez-Puebla ST, Borisy GG. Oral microbiome geography: micron-scale habitat and niche. Cell Host Microbe. 2020;28:160–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shin YJ, Choung HW, Lee JH, Rhyu IC, Kim HD. Association of periodontitis with oral cancer: a case-control study. J Dent Res. 2019;98:526–533.

    Article  CAS  PubMed  Google Scholar 

  37. Sfreddo CS, Maier J, De David SC, Susin C, Moreira CHC. Periodontitis and breast cancer: a case-control study. Commun Dent Oral Epidemiol. 2017;45:545–551.

    Article  Google Scholar 

  38. Cardoso EM, Reis C, Manzanares-Céspedes MC. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases. Postgrad Med. 2018;130:98–104.

    Article  PubMed  Google Scholar 

  39. Liu W, Cao Y, Dong L et al. Periodontal therapy for primary or secondary prevention of cardiovascular disease in people with periodontitis. Cochrane Database Syst Rev. 2019;12:CD009197.

    PubMed  Google Scholar 

  40. Baeza M, Morales A, Cisterna C et al. Effect of periodontal treatment in patients with periodontitis and diabetes: systematic review and meta-analysis. J Appl Oral Sci. 2020;28:e20190248.

    Article  PubMed  CAS  Google Scholar 

  41. Ide M, Harris M, Stevens A et al. Periodontitis and Cognitive Decline in Alzheimer’s Disease. PLoS One. 2016;11:e0151081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ma H, Zheng J, Li X. Potential risk of certain cancers among patients with Periodontitis: a supplementary meta-analysis of a large-scale population. Int J Med Sci. 2020;17:2531–2543.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Deng H, Yang S, Zhang Y et al. Bacteroides fragilis prevents clostridium difficile infection in a mouse model by restoring gut barrier and microbiome regulation. Front Microbiol. 2018;9:2976.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Morita E, Narikiyo M, Yano A et al. Different frequencies of Streptococcus anginosus infection in oral cancer and esophageal cancer. Cancer Sci. 2003;94:492–496.

    Article  CAS  PubMed  Google Scholar 

  45. Narikiyo M, Tanabe C, Yamada Y et al. Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci. 2004;95:569–574.

    Article  CAS  PubMed  Google Scholar 

  46. Peters BA, Wu J, Pei Z et al. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017;77:6777–6787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kageyama S, Takeshita T, Takeuchi K et al. Characteristics of the salivary microbiota in patients with various digestive tract cancers. Front Microbiol. 2019;10:1780.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu Y, Lin Z, Lin Y et al. Streptococcus and Prevotella are associated with the prognosis of oesophageal squamous cell carcinoma. J Med Microbiol. 2018;67:1058–1068.

    Article  CAS  PubMed  Google Scholar 

  49. Kawasaki M, Ikeda Y, Ikeda E et al. Oral infectious bacteria in dental plaque and saliva as risk factors in patients with esophageal cancer. Cancer. 2021;127:512–519.

    Article  PubMed  Google Scholar 

  50. Shi W, Tian J, Xu H, Zhou Q, Qin M. Distinctions and associations between the microbiota of saliva and supragingival plaque of permanent and deciduous teeth. PLoS One. 2018;13:e0200337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ikeda E, Shiba T, Ikeda Y et al. Japanese subgingival microbiota in health vs disease and their roles in predicted functions associated with periodontitis. Odontology. 2020;108:280–291.

    Article  CAS  PubMed  Google Scholar 

  52. Wu JY, Lee YC, Graham DY. The eradication of Helicobacter pylori to prevent gastric cancer: a critical appraisal. Expert Rev Gastroenterol Hepatol. 2019;13:17–24.

    Article  PubMed  CAS  Google Scholar 

  53. Bui FQ, Almeida-da-Silva CLC, Huynh B et al. Association between periodontal pathogens and systemic disease. Biomed J. 2019;42:27–35.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu S, Zhou X, Peng X et al. Porphyromonas gingivalis promotes immunoevasion of oral cancer by protecting cancer from macrophage attack. J Immunol. 2020;205:282–289.

    Article  CAS  PubMed  Google Scholar 

  55. Wen L, Mu W, Lu H et al. Porphyromonas gingivalis promotes oral squamous cell carcinoma progression in an immune microenvironment. J Dent Res. 2020;99:666–675.

    Article  CAS  PubMed  Google Scholar 

  56. Gao SG, Yang JQ, Ma ZK et al. Preoperative serum immunoglobulin G and A antibodies to Porphyromonas gingivalis are potential serum biomarkers for the diagnosis and prognosis of esophageal squamous cell carcinoma. BMC Cancer. 2018;18:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gao S, Li S, Ma Z et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect Agent Cancer. 2016;11:3.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yuan X, Liu Y, Kong J et al. Different frequencies of Porphyromonas gingivalis infection in cancers of the upper digestive tract. Cancer Lett. 2017;404:1–7.

    Article  CAS  PubMed  Google Scholar 

  59. Shao D, Vogtmann E, Liu A et al. Microbial characterization of esophageal squamous cell carcinoma and gastric cardia adenocarcinoma from a high-risk region of China. Cancer. 2019;125:3993–4002.

    Article  CAS  PubMed  Google Scholar 

  60. Yamamura K, Baba Y, Nakagawa S et al. Human microbiome fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res. 2016;22:5574–5581.

    Article  CAS  PubMed  Google Scholar 

  61. Yamamura K, Izumi D, Kandimalla R et al. Intratumoral fusobacterium nucleatum levels predict therapeutic response to neoadjuvant chemotherapy in esophageal squamous cell carcinoma. Clin Cancer Res. 2019;25:6170–6179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu Y, Baba Y, Ishimoto T et al. Fusobacterium nucleatum confers chemoresistance by modulating autophagy in oesophageal squamous cell carcinoma. Br J Cancer. 2021;124:963–974.

    Article  CAS  PubMed  Google Scholar 

  63. May M, Abrams JA. Emerging insights into the esophageal microbiome. Curr Treat Options Gastroenterol. 2018;16:72–85.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zaidi AH, Kelly LA, Kreft RE et al. Associations of microbiota and toll-like receptor signaling pathway in esophageal adenocarcinoma. BMC Cancer. 2016;16:52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Multhoff G, Molls M, Radons J. Chronic inflammation in cancer development. Front Immunol. 2012;2:98.

    Article  PubMed  PubMed Central  Google Scholar 

  66. La Rosa GRM, Gattuso G, Pedullà E, Rapisarda E, Nicolosi D, Salmeri M. Association of oral dysbiosis with oral cancer development. Oncol Lett. 2020;19:3045–3058.

    PubMed  PubMed Central  Google Scholar 

  67. Lv J, Guo L, Liu JJ, Zhao HP, Zhang J, Wang JH. Alteration of the esophageal microbiota in Barrett’s esophagus and esophageal adenocarcinoma. World J Gastroenterol. 2019;25:2149–2161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kitamura H, Ohno Y, Toyoshima Y et al. Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci. 2017;108:1947–1952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin Y, He Z, Ye J et al. Progress in understanding the IL-6/STAT3 pathway in colorectal cancer. Onco Targets Ther. 2020;13:13023–13032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yin Z, Ma T, Lin Y et al. IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. J Cell Biochem. 2018;119:9419–9432.

    Article  CAS  PubMed  Google Scholar 

  71. Chen MF, Chen PT, Lu MS, Lin PY, Chen WC, Lee KD. IL-6 expression predicts treatment response and outcome in squamous cell carcinoma of the esophagus. Mol Cancer. 2013;12:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Chen MF, Kuan FC, Yen TC et al. IL-6-stimulated CD11b+ CD14+ HLA-DR- myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus. Oncotarget. 2014;5:8716–8728.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen MF, Lu MS, Hsieh CC, Chen WC. Porphyromonas gingivalis promotes tumor progression in esophageal squamous cell carcinoma. Cell Oncol (Dordr). 2021;44:373–384.

    Article  CAS  PubMed  Google Scholar 

  74. Chen MF, Chen PT, Lu MS, Chen WC. Role of ALDH1 in the prognosis of esophageal cancer and its relationship with tumor microenvironment. Mol Carcinog. 2018;57:78–88.

    Article  CAS  PubMed  Google Scholar 

  75. Desai SJ, Prickril B, Rasooly A. Mechanisms of phytonutrient modulation of Cyclooxygenase-2 (COX-2) and inflammation related to cancer. Nutr Cancer. 2018;70:350–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Moon H, White AC, Borowsky AD. New insights into the functions of Cox-2 in skin and esophageal malignancies. Exp Mol Med. 2020;52:538–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Song S, Guha S, Liu K, Buttar NS, Bresalier RS. COX-2 induction by unconjugated bile acids involves reactive oxygen species-mediated signalling pathways in Barrett’s oesophagus and oesophageal adenocarcinoma. Gut. 2007;56:1512–1521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Taskan MM, Gevrek F. PPAR-gamma, RXR, VDR, and COX-2 Expressions in gingival tissue samples of healthy individuals, periodontitis and peri-implantitis patients. Niger J Clin Pract. 2020;23:46–53.

    CAS  PubMed  Google Scholar 

  79. Tasneem S, Sarwar MT, Bashir MR, Hussain H, Ahmed J, Pervez S. Expression analysis of cyclooxygenase-2 in patients suffering from esophageal squamous cell carcinoma. PLoS One. 2018;13:e0205508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Morris CD, Armstrong GR, Bigley G, Green H, Attwood SE. Cyclooxygenase-2 expression in the Barrett’s metaplasia-dysplasia-adenocarcinoma sequence. Am J Gastroenterol. 2001;96:990–996.

    CAS  PubMed  Google Scholar 

  81. Nokhbehsaim M, Nogueira AVB, Nietzsche S, Eick S, Deschner J. Regulation of Cyclooxygenase 2 by Filifactor alocis in Fibroblastic and Monocytic Cells. Mediators Inflamm. 2020;2020:4185273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hu P, Huang P, Chen MW. Curcumin attenuates cyclooxygenase-2 expression via inhibition of the NF-kappaB pathway in lipopolysaccharide-stimulated human gingival fibroblasts. Cell Biol Int. 2013;37:443–448.

    Article  CAS  PubMed  Google Scholar 

  83. Hu Z, Yang Y, Zhao Y, Huang Y. The prognostic value of cyclooxygenase-2 expression in patients with esophageal cancer: evidence from a meta-analysis. Onco Targets Ther. 2017;10:2893–2901.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gambhir S, Vyas D, Hollis M, Aekka A, Vyas A. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies. World J Gastroenterol. 2015;21:3174–3183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fan Y, Mao R, Yang J. NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 2013;4:176–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Abdel-Latif MM, Inoue H, Kelleher D, Reynolds JV. Factors regulating nuclear factor-kappa B activation in esophageal cancer cells: Role of bile acids and acid. J Cancer Res Ther. 2016;12:364–373.

    Article  CAS  PubMed  Google Scholar 

  87. Agrawal AK, Pielka E, Lipinski A, Jelen M, Kielan W, Agrawal S. Clinical validation of nuclear factor kappa B expression in invasive breast cancer. Tumour Biol. 2018;40:1010428317750929.

    Article  PubMed  CAS  Google Scholar 

  88. Plewka D, Plewka A, Miskiewicz A, Morek M, Bogunia E. Nuclear factor-kappa B as potential therapeutic target in human colon cancer. J Cancer Res Ther. 2018;14:516–520.

    Article  CAS  PubMed  Google Scholar 

  89. Monisha J, Roy NK, Bordoloi D et al. Nuclear Factor Kappa B: A Potential Target to Persecute Head and Neck Cancer. Curr Drug Targets. 2017;18:232–253.

    Article  CAS  PubMed  Google Scholar 

  90. Sun Q, Fan G, Zhuo Q et al. Pin1 promotes pancreatic cancer progression and metastasis by activation of NF-kappaB-IL-18 feedback loop. Cell Prolif. 2020;53:e12816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Meng F, Li R, Ma L et al. Porphyromonas gingivalis promotes the motility of esophageal squamous cell carcinoma by activating NF-κB signaling pathway. Microbes Infect. 2019;21:296–304.

    Article  CAS  PubMed  Google Scholar 

  92. Konturek PC, Nikiforuk A, Kania J, Raithel M, Hahn EG, Mühldorfer S. Activation of NFkappaB represents the central event in the neoplastic progression associated with Barrett’s esophagus: a possible link to the inflammation and overexpression of COX-2, PPARgamma and growth factors. Dig Dis Sci. 2004;49:1075–1083.

    Article  CAS  PubMed  Google Scholar 

  93. He J, Wei W, Yang Q, Wang Y. Phillygenin exerts in vitro and in vivo antitumor effects in drug-resistant human esophageal cancer cells by inducing mitochondrial-mediated apoptosis, ROS generation, and inhibition of the nuclear factor kappa B NF-kappaB signalling pathway. Med Sci Monit. 2019;25:739–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xiong G, Ji W, Wang F et al. Quercetin inhibits inflammatory response induced by LPS from porphyromonas gingivalis in human gingival fibroblasts via suppressing NF-kappaB signaling pathway. Biomed Res Int. 2019;2019:6282635.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fu E, Tsai MC, Chin YT et al. The effects of diallyl sulfide upon Porphyromonas gingivalis lipopolysaccharide stimulated proinflammatory cytokine expressions and nuclear factor-kappa B activation in human gingival fibroblasts. J Periodontal Res. 2015;50:380–388.

    Article  CAS  PubMed  Google Scholar 

  96. Dommisch H, Chung WO, Jepsen S, Hacker BM, Dale BA. Phospholipase C, p38/MAPK, and NF-kappaB-mediated induction of MIP-3alpha/CCL20 by Porphyromonas gingivalis. Innate Immun. 2010;16:226–234.

    Article  CAS  PubMed  Google Scholar 

  97. Aliko A, Kamińska M, Bergum B et al. Impact of porphyromonas gingivalis peptidylarginine deiminase on bacterial biofilm formation, epithelial cell invasion, and epithelial cell transcriptional landscape. Sci Rep. 2018;8:14144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kadomoto S, Izumi K, Mizokami A. The CCL20-CCR6 axis in cancer progression. Int J Mol Sci. 2020;21:5186.

    Article  CAS  PubMed Central  Google Scholar 

  99. Li Z, Qian J, Li J, Zhu C. Clinical significance of serum chemokines in esophageal cancer. Med Sci Monit. 2019;25:5850–5855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lian J, Liu S, Yue Y et al. Eomes promotes esophageal carcinoma progression by recruiting Treg cells through the CCL20-CCR6 pathway. Cancer Sci. 2021;112:144–154.

    Article  CAS  PubMed  Google Scholar 

  101. Ebersole JL, Peyyala R, Gonzalez OA. Biofilm-induced profiles of immune response gene expression by oral epithelial cells. Mol Oral Microbiol. 2019. https://doi.org/10.1111/omi.12251.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Loos BG, Van Dyke TE. The role of inflammation and genetics in periodontal disease. Periodontol 2000;2020:26–39.

    Google Scholar 

  103. Cani PD, Jordan BF. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2018;15:671–682.

    Article  CAS  PubMed  Google Scholar 

  104. McCall KD, Muccioli M, Benencia F. Toll-like receptors signaling in the tumor microenvironment. Adv Exp Med Biol. 2020;1223:81–97.

    Article  CAS  PubMed  Google Scholar 

  105. Kauppila JH, Selander KS. Toll-like receptors in esophageal cancer. Front Immunol. 2014;5:200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Kohtz PD, Halpern AL, Eldeiry MA et al. Toll-like receptor-4 Is a mediator of proliferation in esophageal adenocarcinoma. Ann Thorac Surg. 2019;107:233–241.

    Article  PubMed  Google Scholar 

  107. Verbeek RE, Siersema PD, Ten Kate FJ et al. Toll-like receptor 4 activation in Barrett’s esophagus results in a strong increase in COX-2 expression. J Gastroenterol. 2014;49:1121–1134.

    Article  CAS  PubMed  Google Scholar 

  108. Rousseau MC, Hsu RY, Spicer JD et al. Lipopolysaccharide-induced toll-like receptor 4 signaling enhances the migratory ability of human esophageal cancer cells in a selectin-dependent manner. Surgery. 2013;154:69–77.

    Article  PubMed  Google Scholar 

  109. Zu Y, Ping W, Deng T, Zhang N, Fu X, Sun W. Lipopolysaccharide-induced toll-like receptor 4 signaling in esophageal squamous cell carcinoma promotes tumor proliferation and regulates inflammatory cytokines expression. Dis Esophagus. 2017;30:1–8.

    PubMed  Google Scholar 

  110. Sato Y, Motoyama S, Wakita A et al. High TLR4 expression predicts a poor prognosis after esophagectomy for advanced thoracic esophageal squamous cell carcinoma. Esophagus. 2020;17:408–416.

    Article  PubMed  Google Scholar 

  111. Palumbo A Jr, Da Costa NM, Pontes B et al. Esophageal cancer development: crucial clues arising from the extracellular matrix. Cells. 2020;9:455.

    Article  CAS  PubMed Central  Google Scholar 

  112. Gobin E, Bagwell K, Wagner J et al. A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer. 2019;19:581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Mohammadi F, Javid H, Afshari AR, Mashkani B, Hashemy SI. Substance P accelerates the progression of human esophageal squamous cell carcinoma via MMP-2, MMP-9, VEGF-A, and VEGFR1 overexpression. Mol Biol Rep. 2020;47:4263–4272.

    Article  CAS  PubMed  Google Scholar 

  114. Juchniewicz A, Kowalczuk O, Milewski R et al. MMP-10, MMP-7, TIMP-1 and TIMP-2 mRNA expression in esophageal cancer. Acta Biochim Pol. 2017;64:295–299.

    Article  CAS  PubMed  Google Scholar 

  115. Han F, Zhang S, Zhang L, Hao Q. The overexpression and predictive significance of MMP-12 in esophageal squamous cell carcinoma. Pathol Res Pract. 2017;213:1519–1522.

    Article  CAS  PubMed  Google Scholar 

  116. Chen N, Zhang G, Fu J, Wu Q. Matrix metalloproteinase-14 (MMP-14) downregulation inhibits esophageal squamous cell carcinoma cell migration, invasion, and proliferation. Thorac Cancer. 2020;11:3168–3174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yakob M, Meurman JH, Sorsa T, Söder B. Treponema denticola associates with increased levels of MMP-8 and MMP-9 in gingival crevicular fluid. Oral Dis. 2013;19:694–701.

    Article  CAS  PubMed  Google Scholar 

  118. Bozkurt SB, Hakki SS, Hakki EE, Durak Y, Kantarci A. Porphyromonas gingivalis Lipopolysaccharide Induces a PRO-INFLAMMATORY HUMAN GINGIVAL FIBROBLAST PHENOtype. Inflammation. 2017;40:144–153.

    Article  CAS  PubMed  Google Scholar 

  119. Alves VTE, da Silva HAB, de França BN et al. Periodontal treatment downregulates protease-activated receptor 2 in human gingival crevicular fluid cells. Infect Immun. 2013;81:4399–4407.

    Article  CAS  Google Scholar 

  120. Sheng J, Deng X, Zhang Q et al. PAR-2 promotes invasion and migration of esophageal cancer cells by activating MEK/ERK and PI3K/Akt signaling pathway. Int J Clin Exp Pathol. 2019;12:787–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Shi H, Mao Y, Ju Q et al. C-terminal binding protein-2 mediates cisplatin chemoresistance in esophageal cancer cells via the inhibition of apoptosis. Int J Oncol. 2018;53:167–176.

    CAS  PubMed  Google Scholar 

  122. White T, Alimova Y, Alves VTE et al. Oral commensal bacteria differentially modulate epithelial cell death. Arch Oral Biol. 2020;120:104926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li Q, Zhou J, Lin L, Zhao H, Miao L, Pan Y. Porphyromonas gingivalis degrades integrin β1 and induces AIF-mediated apoptosis of epithelial cells. Infect Dis (Lond). 2019;51:793–801.

    Article  CAS  PubMed  Google Scholar 

  124. Lee J, Roberts JS, Atanasova KR, Chowdhury N, Yilmaz Ö. A novel kinase function of a nucleoside-diphosphate-kinase homologue in Porphyromonas gingivalis is critical in subversion of host cell apoptosis by targeting heat-shock protein 27. Cell Microbiol. 2018;20:e12825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Yu T, Guo F, Yu Y et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170:548–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wu K, Yang Y, Liu D et al. Activation of PPARgamma suppresses proliferation and induces apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway. Oncotarget. 2016;7:44572–44582.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sumi S, Suzuki Y, Matsuki T et al. Light-inducible carotenoid production controlled by a MarR-type regulator in Corynebacterium glutamicum. Sci Rep. 2019;9:13136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Nupur LN, Vats A, Dhanda SK, Raghava GP, Pinnaka AK, Kumar A. ProCarDB: a database of bacterial carotenoids. BMC Microbiol. 2016;16:96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fiedor J, Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 2014;6:466–488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Dutta S, Surapaneni BK, Bansal A. Marked inhibition of cellular proliferation in the normal human esophageal epithelial cells and human esophageal squamous cancer cells in culture by carotenoids: role for prevention and early treatment of esophageal cancer. Asian Pac J Cancer Prev. 2018;19:3251–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Afra S, Makhdoumi A, Matin MM, Feizy J. A novel red pigment from marine Arthrobacter sp. G20 with specific anticancer activity. J Appl Microbiol. 2017;123:1228–1236.

    Article  CAS  PubMed  Google Scholar 

  132. Chen H, Nie S, Zhu Y, Lu M. Teeth loss, teeth brushing and esophageal carcinoma: a systematic review and meta-analysis. Sci Rep. 2015;5:15203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ahrens W, Pohlabeln H, Foraita R et al. Oral health, dental care and mouthwash associated with upper aerodigestive tract cancer risk in Europe: the ARCAGE study. Oral Oncol. 2014;50:616–625.

    Article  PubMed  Google Scholar 

  134. Yoneda S, Imai S, Hanada N et al. Effects of oral care on development of oral mucositis and microorganisms in patients with esophageal cancer. Jpn J Infect Dis. 2007;60:23–28.

    PubMed  Google Scholar 

  135. Moriyama S, Hinode D, Yoshioka M et al. Impact of the use of Kampo medicine in patients with esophageal cancer during chemotherapy: a clinical trial for oral hygiene and oral condition. J Med Invest. 2018;65:184–190.

    Article  PubMed  Google Scholar 

  136. Mizuno H, Mizutani S, Ekuni D et al. New oral hygiene care regimen reduces postoperative oral bacteria count and number of days with elevated fever in ICU patients with esophageal cancer. J Oral Sci. 2018;60:536–543.

    Article  CAS  PubMed  Google Scholar 

  137. Tanda N, Washio J, Kamei T, Akazawa K, Takahashi N, Koseki T. Professional oral care reduces carcinogenic acetaldehyde levels in mouth air of perioperative esophageal cancer patients: a prospective comparative study. Tohoku J Exp Med. 2019;249:75–83.

    Article  CAS  PubMed  Google Scholar 

  138. Booka E, Takeuchi H, Nishi T et al. The Impact of Postoperative Complications on Survivals After Esophagectomy for Esophageal Cancer. Medicine (Baltimore). 2015;94:e1369.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Akutsu Y, Matsubara H, Okazumi S et al. Impact of preoperative dental plaque culture for predicting postoperative pneumonia in esophageal cancer patients. Dig Surg. 2008;25:93–97.

    Article  PubMed  Google Scholar 

  140. Yuda M, Yamashita K, Okamura A et al. Influence of preoperative oropharyngeal microflora on the occurrence of postoperative pneumonia and survival in patients undergoing esophagectomy for esophageal cancer. Ann Surg. 2020;272:1035–1043.

    Article  PubMed  Google Scholar 

  141. Akutsu Y, Matsubara H, Shuto K et al. Pre-operative dental brushing can reduce the risk of postoperative pneumonia in esophageal cancer patients. Surgery. 2010;147:497–502.

    Article  PubMed  Google Scholar 

  142. Soutome S, Hasegawa T, Yamguchi T et al. Prevention of postoperative pneumonia by perioperative oral care in patients with esophageal cancer undergoing surgery: a multicenter retrospective study of 775 patients. Support Care Cancer. 2020;28:4155–4162.

    Article  PubMed  Google Scholar 

  143. Soutome S, Yanamoto S, Funahara M et al. Preventive effect on post-operative pneumonia of oral health care among patients who undergo esophageal resection: a multi-center retrospective study. Surg Infect (Larchmt). 2016;17:479–484.

    Article  PubMed  Google Scholar 

  144. Yamada Y, Yurikusa T, Furukawa K et al. The effect of improving oral hygiene through professional oral care to reduce the incidence of pneumonia post-esophagectomy in esophageal cancer. Keio J Med. 2019;68:17–25.

    Article  CAS  PubMed  Google Scholar 

  145. Zhang S, Chen DC. Facing a new challenge: the adverse effects of antibiotics on gut microbiota and host immunity. Chin Med J (Engl). 2019;132:1135–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer. 2017;17:271–285.

    Article  CAS  PubMed  Google Scholar 

  147. Wu C, Lai R, Li J et al. Antibiotics modulate chemotherapy efficacy in patients with esophageal cancer. Cancer Manag Res. 2020;12:4991–4997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Guo JC, Lin CC, Lin CY et al. Neutrophil-to-lymphocyte ratio and use of antibiotics associated with prognosis in esophageal squamous cell carcinoma patients receiving immune checkpoint inhibitors. Anticancer Res. 2019;39:5675–5682.

    Article  CAS  PubMed  Google Scholar 

  149. Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol. 2020;42:75–93.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Greiner-Tollersrud, O.K. & Zhou, H. Oral Microbiota Variation: A Risk Factor for Development and Poor Prognosis of Esophageal Cancer. Dig Dis Sci 67, 3543–3556 (2022). https://doi.org/10.1007/s10620-021-07245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-07245-2

Keywords

Navigation