Skip to main content

Advertisement

Log in

Knockdown of circRAD23B Exerts Antitumor Response in Colorectal Cancer via the Regulation of miR-1205/TRIM44 axis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Colorectal cancer (CRC) is a common cancer with high metastatic property. Circular RNAs (circRNAs) have important involvement in cancer processes. This study focused on the regulation of circRNA RAD23 homologue B (circRAD23B) in CRC.

Methods

The levels of circRAD23B, microRNA-1205 (miR-1205), and tripartite motif-44 (TRIM44) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). Functional analyses were performed by Cell Counting Kit-8 (CCK-8) for cell proliferation, flow cytometry for cell cycle or cell apoptosis, and transwell assay for cell migration and invasion. Western blot was administrated for protein detection. The interaction of targets was analyzed by dual-luciferase reporter and RNA pull-down assays. The in vivo experiment was conducted via xenograft tumor in mice.

Results

We identified that circRAD23B was overexpressed in CRC tissues and cells. CRC cell proliferation, cell cycle progression, and cell metastasis were inhibited, while apoptosis was promoted by downregulating circRAD23B. Target analysis indicated that circRAD23B-targeted miR-1205 and TRIM44 were downstream genes of miR-1205. Moreover, the antitumor response of circRAD23B downregulation and miR-1205 overexpression was, respectively, achieved by increasing miR-1205 and decreasing TRIM44. CircRAD23B could regulate TRIM44 level by sponging miR-1205. In vivo, circRAD23B knockdown also reduced CRC tumorigenesis via the miR-1205/TRIM44 axis.

Conclusion

These results suggested that the inhibition of circRAD23B retarded the progression of CRC via acting on the miR-1205/TRIM44 axis. CircRAD23B might be a novel target in CRC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang W, Kandimalla R, Huang H et al. Molecular subtyping of colorectal cancer: recent progress, new challenges and emerging opportunities. Semin Cancer Biol. 2019;55:37–52. https://doi.org/10.1016/j.semcancer.2018.05.002.

    Article  CAS  PubMed  Google Scholar 

  2. Pang SW, Awi NJ, Armon S et al. Current update of laboratory molecular diagnostics advancement in management of colorectal cancer (CRC). Diagnostics (Basel) 2019;10:9. https://doi.org/10.3390/diagnostics10010009.

    Article  CAS  Google Scholar 

  3. Mei XL, Zheng QF. Role of cellular biomolecules in screening, diagnosis and treatment of colorectal cancer. Curr Drug Metab. 2019;20:880–888. https://doi.org/10.2174/1389200220666191018153428.

    Article  CAS  PubMed  Google Scholar 

  4. Wang P, He X. Current research on circular RNAs associated with colorectal cancer. Scand J Gastroenterol. 2017;52:1203–1210. https://doi.org/10.1080/00365521.2017.1365168.

    Article  CAS  PubMed  Google Scholar 

  5. Mumtaz PT, Taban Q, Dar MA et al. Deep insights in circular RNAs: from biogenesis to therapeutics. Biol Proced Online 2020;22:10. https://doi.org/10.1186/s12575-020-00122-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lu C, Fu L, Qian X et al. Knockdown of circular RNA circ-FARSA restricts colorectal cancer cell growth through regulation of miR-330-5p/LASP1 axis. Arch Biochem Biophys. 2020;689:108434. https://doi.org/10.1016/j.abb.2020.108434.

    Article  CAS  PubMed  Google Scholar 

  7. Yin W, Xu J, Li C et al. Circular RNA circ_0007142 facilitates colorectal cancer progression by modulating CDC25A expression via miR-122-5p. Onco Targets Ther. 2020;13:3689–3701. https://doi.org/10.2147/OTT.S238338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang J, Luo J, Liu G et al. Circular RNA hsa_circ_0008285 inhibits colorectal cancer cell proliferation and migration via the miR-382-5p/PTEN axis. Biochem Biophys Res Commun. 2020;527:503–510. https://doi.org/10.1016/j.bbrc.2020.03.165.

    Article  CAS  PubMed  Google Scholar 

  9. Braicu C, Zimta AA, Harangus A et al. The function of non-coding RNAs in lung cancer tumorigenesis. Cancers (Basel) 2019;11:605. https://doi.org/10.3390/cancers11050605.

    Article  CAS  Google Scholar 

  10. Lan X, Liu X, Sun J et al. CircRAD23B facilitates proliferation and invasion of esophageal cancer cells by sponging miR-5095. Biochem Biophys Res Commun. 2019;516:357–364. https://doi.org/10.1016/j.bbrc.2019.06.044.

    Article  CAS  PubMed  Google Scholar 

  11. Han W, Wang L, Zhang L et al. Circular RNA circ-RAD23B promotes cell growth and invasion by miR-593-3p/CCND2 and miR-653-5p/TIAM1 pathways in non-small cell lung cancer. Biochem Biophys Res Commun. 2019;510:462–466. https://doi.org/10.1016/j.bbrc.2019.01.131.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang Y, Liu G, Ye W et al. ZEB2-AS1 accelerates epithelial/mesenchymal transition through miR-1205/CRKL pathway in colorectal cancer. Cancer Biother Radiopharm. 2020;35:153–162. https://doi.org/10.1089/cbr.2019.3000.

    Article  CAS  PubMed  Google Scholar 

  13. Li CG, Hu H, Yang XJ et al. TRIM44 promotes colorectal cancer proliferation, migration, and invasion through the Akt/mTOR signaling pathway. Onco Targets Ther. 2019;12:10693–10701. https://doi.org/10.2147/OTT.S228637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lei R, Feng L, Hong D. ELFN1-AS1 accelerates the proliferation and migration of colorectal cancer via regulation of miR-4644/TRIM44 axis. Cancer Biomark. 2020;27:433–443. https://doi.org/10.3233/CBM-190559.

    Article  CAS  PubMed  Google Scholar 

  15. Gu J, Xu T, Huang QH et al. HMGB3 silence inhibits breast cancer cell proliferation and tumor growth by interacting with hypoxia-inducible factor 1alpha. Cancer Manag Res. 2019;11:5075–5089. https://doi.org/10.2147/CMAR.S204357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang Q, Hann SS. Biological roles and mechanisms of circular RNA in human cancers. Onco Targets Ther. 2020;13:2067–2092. https://doi.org/10.2147/OTT.S233672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Holdt LM, Kohlmaier A, Teupser D. Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci. 2018;75:1071–1098. https://doi.org/10.1007/s00018-017-2688-5.

    Article  CAS  PubMed  Google Scholar 

  18. Wei J, Wei W, Xu H et al. Circular RNA hsa_circRNA_102958 may serve as a diagnostic marker for gastric cancer. Cancer Biomark. 2020;27:139–145. https://doi.org/10.3233/CBM-182029.

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Zhang H, Wang Y et al. Silencing circular RNA hsa_circ_0004491 promotes metastasis of oral squamous cell carcinoma. Life Sci. 2019;239:116883. https://doi.org/10.1016/j.lfs.2019.116883.

    Article  CAS  PubMed  Google Scholar 

  20. Luo Z, Mao X, Cui W. Circular RNA expression and circPTPRM promotes proliferation and migration in hepatocellular carcinoma. Med Oncol. 2019;36:86. https://doi.org/10.1007/s12032-019-1311-z.

    Article  CAS  PubMed  Google Scholar 

  21. Hou JC, Xu Z, Zhong SL et al. Circular RNA circASS1 is downregulated in breast cancer cells MDA-MB-231 and suppressed invasion and migration. Epigenomics 2019;11:199–213. https://doi.org/10.2217/epi-2017-0167.

    Article  CAS  PubMed  Google Scholar 

  22. Li XN, Wang ZJ, Ye CX et al. Circular RNA circVAPA is up-regulated and exerts oncogenic properties by sponging miR-101 in colorectal cancer. Biomed Pharmacother. 2019;112:108611. https://doi.org/10.1016/j.biopha.2019.108611.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu M, Xu Y, Chen Y et al. Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer. Biomed Pharmacother. 2017;88:138–144. https://doi.org/10.1016/j.biopha.2016.12.097.

    Article  CAS  PubMed  Google Scholar 

  24. Li XN, Wang ZJ, Ye CX et al. RNA sequencing reveals the expression profiles of circRNA and indicates that circDDX17 acts as a tumor suppressor in colorectal cancer. J Exp Clin Cancer Res. 2018;37:325. https://doi.org/10.1186/s13046-018-1006-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X, Wang J, Zhang C et al. Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7. J Pathol. 2018;246:166–179. https://doi.org/10.1002/path.5125.

    Article  CAS  PubMed  Google Scholar 

  26. Jin Y, Yu LL, Zhang B et al. Circular RNA hsa_circ_0000523 regulates the proliferation and apoptosis of colorectal cancer cells as miRNA sponge. Braz J Med Biol Res. 2018;51:e7811. https://doi.org/10.1590/1414-431X20187811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yuan Y, Liu W, Zhang Y et al. CircRNA circ_0026344 as a prognostic biomarker suppresses colorectal cancer progression via microRNA-21 and microRNA-31. Biochem Biophys Res Commun. 2018;503:870–875. https://doi.org/10.1016/j.bbrc.2018.06.089.

    Article  CAS  PubMed  Google Scholar 

  28. Qiu L, Huang Y, Li Z et al. Circular RNA profiling identifies circADAMTS13 as a miR-484 sponge which suppresses cell proliferation in hepatocellular carcinoma. Mol Oncol. 2019;13:441–455. https://doi.org/10.1002/1878-0261.12424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li P, Lin XJ, Yang Y et al. Reciprocal regulation of miR-1205 and E2F1 modulates progression of laryngeal squamous cell carcinoma. Cell Death Dis. 2019;10:916. https://doi.org/10.1038/s41419-019-2154-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yi C, Li H, Li D et al. Upregulation of circular RNA circ_0034642 indicates unfavorable prognosis in glioma and facilitates cell proliferation and invasion via the miR-1205/BATF3 axis. J Cell Biochem. 2019;120:13737–13744. https://doi.org/10.1002/jcb.28646.

    Article  CAS  PubMed  Google Scholar 

  31. Yamada Y, Kimura N, Takayama KI et al. TRIM44 promotes cell proliferation and migration by inhibiting FRK in renal cell carcinoma. Cancer Sci. 2020;111:881–890. https://doi.org/10.1111/cas.14295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou X, Yang Y, Ma P et al. TRIM44 is indispensable for glioma cell proliferation and cell cycle progression through AKT/p21/p27 signaling pathway. J Neurooncol. 2019;145:211–222. https://doi.org/10.1007/s11060-019-03301-0.

    Article  CAS  PubMed  Google Scholar 

  33. Liu S, Meng F, Ding J et al. High TRIM44 expression as a valuable biomarker for diagnosis and prognosis in cervical cancer. Biosci Rep. 2019;39:20181639. https://doi.org/10.1042/BSR20181639.

    Article  Google Scholar 

  34. Ji X, Tao R, Sun LY et al. Down-regulation of long non-coding RNA DUXAP8 suppresses proliferation, metastasis and EMT by modulating miR-498 through TRIM44-mediated AKT/mTOR pathway in non-small-cell lung cancer. Eur Rev Med Pharmacol Sci. 2020;24:3152–3165. https://doi.org/10.26355/eurrev_202003_20682.

    Article  CAS  PubMed  Google Scholar 

  35. Sun S, Li W, Ma X et al. Long noncoding RNA LINC00265 promotes glycolysis and lactate production of colorectal cancer through regulating of miR-216b-5p/TRIM44 axis. Digestion. 2019. https://doi.org/10.1159/000500195.

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10620_2021_6859_MOESM1_ESM.tif

Supplementary Fig.1. MiR-1205 was used as the target research for circRAD23B. (A) Venn diagram was performed to seek the potential targets for circRAD23B from the predicted miRNAs by circinteractome and circBank. (B) The expression levels of miR-1205, miR-1253, miR-892b and miR-935 were detected in SW480 cells transfected with si-NC or si-RAD23B#2. All experiments were performed three times (N=3). *P < 0.05. (TIF 365 kb)

10620_2021_6859_MOESM2_ESM.tif

Supplementary Fig.2. TRIM44 upregulation in colon adenocarcinoma. The dataset analysis of TRIM44 expression in 471 cancer and 41 normal samples. (TIF 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Wang, X. & Yin, X. Knockdown of circRAD23B Exerts Antitumor Response in Colorectal Cancer via the Regulation of miR-1205/TRIM44 axis. Dig Dis Sci 67, 504–515 (2022). https://doi.org/10.1007/s10620-021-06859-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-06859-w

Keywords

Navigation