Skip to main content

Advertisement

Log in

Current Status of Medical Therapy for Inflammatory Bowel Disease: The Wealth of Medications

  • MENTORED REVIEW
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Previously, the natural history of Crohn’s disease and ulcerative colitis included significant morbidity due to limited treatment options that were not without serious side effects. Early treatment options included corticosteroids as well as mesalamine, thiopurines, and methotrexate. In 1998, monoclonal antibodies to a key inflammatory cytokine, TNFα, became available. Over the next 22 years, the field of gastroenterology has seen multiple new treatments emerging for inflammatory bowel disease (IBD) that target different aspects of the inflammatory cascade, significantly changing the therapeutic landscape. Additional monoclonal antibodies are available that target the integrins, which are adhesion proteins that traffic inflammatory leukocytes. Small molecule inhibitors block the inflammatory signals of several cytokines. New therapies that modulate lymphocyte escape from lymphoid tissue are promising. Lastly, stem cell technology has emerged as a platform to successfully treat perianal fistulizing disease. Our aim is to summarize the currently available therapies for IBD beyond steroids, mesalamine, and immune modulators. We highlight the most important clinical trials that have brought these treatments to clinical practice, and we discuss the ongoing clinical trials of novel therapies that have a high probability of eventual regulatory approval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AMI:

Amiselimod

APC:

Antigen presenting cells

cAMP:

Cyclic adenosine monophosphate

CDAI:

Crohn’s Disease Activity Index

IFX:

Infliximab

ITGAE:

Integrin alpha E gene

JAK:

Janus kinase

MSC:

Mesenchymal stem cells

OZA:

Ozanimod

PDE4:

Phosphodiesterase-4

PF:

PF-00547659/ontamalimab

PML:

Progressive multifocal leukoencephalopathy

S1P:

Sphingosine-1-phosphate

STAT:

Signal transducers and activators of transcription

TNF:

Tumor necrosis factor

TYK:

Tyrosine kinase

UST:

Ustekinumab

VDZ:

Vedolizumab

VTE:

Venous thromboembolism

References

  1. Andreou NP, Legaki E, Gazouli M. Inflammatory bowel disease pathobiology: the role of the interferon signature. Ann Gastroenterol. 2020;33:125–133.

    PubMed  PubMed Central  Google Scholar 

  2. De Vries LCS, Wildenberg ME, De Jonge WJ, D’Haens GR. The future of Janus Kinase inhibitors in inflammatory bowel disease. J Crohns Colitis. 2017;11:885–893.

    PubMed  PubMed Central  Google Scholar 

  3. Hollander D, Kaunitz JD. The “Leaky Gut”: tight junctions but loose associations? Dig Dis Sci. 2020;65:1277–1287. https://doi.org/10.1007/s10620-019-05777-2.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Matsuoka K, Inoue N, Sato T, et al. T-bet upregulation and subsequent interleukin 12 stimulation are essential for induction of Th1 mediated immunopathology in Crohn’s disease. Gut. 2004;53:1303–1308.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Perez-Jeldres T, Tyler CJ, Boyer JD, et al. Targeting cytokine signaling and lymphocyte traffic via small molecules in inflammatory bowel disease: JAK inhibitors and S1PR agonists. Front Pharmacol. 2019;10:212.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Fuss IJ, Neurath M, Boirivant M, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol. 1996;157:1261–1270.

    CAS  PubMed  Google Scholar 

  7. Heller F, Florian P, Bojarski C, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129:550–564.

    CAS  PubMed  Google Scholar 

  8. Heller F, Fromm A, Gitter AH, Mankertz J, Schulzke JD. Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: effect of pro-inflammatory interleukin-13 on epithelial cell function. Mucosal Immunol. 2008;1:S58–S61.

    CAS  PubMed  Google Scholar 

  9. Strober W, Fuss IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140:1756–1767.

    PubMed  CAS  Google Scholar 

  10. Liang S, Dai J, Hou S, et al. Structural basis for treating tumor necrosis factor alpha (TNFalpha)-associated diseases with the therapeutic antibody infliximab. J Biol Chem. 2013;288:13799–13807.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Targan SR, Hanauer SB, van Deventer SJ, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med. 1997;337:1029–1035.

    CAS  PubMed  Google Scholar 

  12. Present DH, Rutgeerts P, Targan S, et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med. 1999;340:1398–1405.

    CAS  PubMed  Google Scholar 

  13. Sands BE, Anderson FH, Bernstein CN, et al. Infliximab maintenance therapy for fistulizing Crohn’s disease. N Engl J Med. 2004;350:876–885.

    CAS  PubMed  Google Scholar 

  14. McKeage K. A review of CT-P13: an infliximab biosimilar. BioDrugs. 2014;28:313–321.

    PubMed  CAS  Google Scholar 

  15. Harburger DS, Calderwood DA. Integrin signalling at a glance. J Cell Sci. 2009;122:159–163.

    PubMed  CAS  Google Scholar 

  16. Erle DJ, Briskin MJ, Butcher EC, Garcia-Pardo A, Lazarovits AI, Tidswell M. Expression and function of the MAdCAM-1 receptor, integrin alpha 4 beta 7, on human leukocytes. J Immunol. 1994;153:517–528.

    PubMed  CAS  Google Scholar 

  17. Bloomgren G, Richman S, Hotermans C, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med. 2012;366:1870–1880.

    PubMed  CAS  Google Scholar 

  18. Sandborn WJ, Feagan BG, Rutgeerts P, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369:711–721.

    CAS  PubMed  Google Scholar 

  19. Sands BE, Feagan BG, Rutgeerts P, et al. Effects of vedolizumab induction therapy for patients with Crohn’s disease in whom tumor necrosis factor antagonist treatment failed. Gastroenterology. 2014;147:618–627.

    PubMed  CAS  Google Scholar 

  20. Feagan BG, Rutgeerts P, Sands BE, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369:699–710.

    CAS  PubMed  Google Scholar 

  21. Vermeire S, O’Byrne S, Keir M, et al. Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet. 2014;384:309–318.

    PubMed  CAS  Google Scholar 

  22. Tew GW, Hackney JA, Gibbons D, et al. Association between response to etrolizumab and expression of integrin alphaE and granzyme A in colon biopsies of patients with ulcerative colitis. Gastroenterology. 2016;150:477–487.

    PubMed  Google Scholar 

  23. Yoshimura N, Watanabe M, Motoya S, et al. Safety and efficacy of AJM300, an oral antagonist of alpha4 integrin, in induction therapy for patients with active ulcerative colitis. Gastroenterology. 2015;149:1775–1783.

    PubMed  CAS  Google Scholar 

  24. Vermeire S, Sandborn WJ, Danese S, et al. Anti-MAdCAM antibody (PF-00547659) for ulcerative colitis (TURANDOT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2017;390:135–144.

    PubMed  CAS  Google Scholar 

  25. Sandborn WJ, Lee SD, Tarabar D, et al. phase II evaluation of anti-MAdCAM antibody PF-00547659 in the treatment of Crohn’s disease: report of the OPERA study. Gut. 2018;67:1824–1835.

    PubMed  CAS  Google Scholar 

  26. D’Haens GR, Reinisch W, Lee SD, et al. OP024 Long-term safety and efficacy of the anti-MAdCAM monoclonal antibody SHP647 for the treatment of Crohn’s disease: the OPERA II study. J Crohns Colitis. 2018;12:S017–S018.

    Google Scholar 

  27. Liu TC, Stappenbeck TS. Genetics and pathogenesis of inflammatory bowel disease. Annu Rev Pathol. 2016;11:127–148.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Feagan BG, Sandborn WJ, Gasink C, et al. Ustekinumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2016;375:1946–1960.

    CAS  PubMed  Google Scholar 

  29. Sands BE, Sandborn WJ, Panaccione R, et al. Ustekinumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2019;381:1201–1214.

    PubMed  CAS  Google Scholar 

  30. Sandborn WJ, Ferrante M, Bhandari BR, et al. Efficacy and safety of mirikizumab in a randomized phase 2 study of patients with ulcerative colitis. Gastroenterology. 2020;158:537–549.

    PubMed  CAS  Google Scholar 

  31. Feagan BG, Sandborn WJ, D’Haens G, et al. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn’s disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet. 2017;389:1699–1709.

    PubMed  CAS  Google Scholar 

  32. Feagan BG, Panes J, Ferrante M, et al. Risankizumab in patients with moderate to severe Crohn’s disease: an open-label extension study. Lancet Gastroenterol Hepatol. 2018;3:671–680.

    PubMed  Google Scholar 

  33. Sands BE, Chen J, Feagan BG, et al. Efficacy and safety of MEDI2070, an antibody against interleukin 23, in patients with moderate to severe Crohn’s disease: a phase 2a study. Gastroenterology. 2017;153:77–86.

    PubMed  CAS  Google Scholar 

  34. Grossberg LB. A case report of successful treatment of Crohn’s disease and psoriasis with guselkumab. Inflamm Bowel Dis. 2019;25:e84.

    PubMed  Google Scholar 

  35. Berman HS, Villa NM, Shi VY, Hsiao JL. Guselkumab in the treatment of concomitant hidradenitis suppurativa, psoriasis, and Crohn’s disease. J Dermatolog Treat. 2019:1–3.

  36. D’Amico F, Parigi TL, Fiorino G, Peyrin-Biroulet L, Danese S. Tofacitinib in the treatment of ulcerative colitis: efficacy and safety from clinical trials to real-world experience. Therap Adv Gastroenterol. 2019;12:1–10.

    Google Scholar 

  37. Danese S, Argollo M, Le Berre C, Peyrin-Biroulet L. JAK selectivity for inflammatory bowel disease treatment: does it clinically matter? Gut. 2019;68:1893–1899.

    PubMed  CAS  Google Scholar 

  38. Danese S, Grisham M, Hodge J, Telliez JB. JAK inhibition using tofacitinib for inflammatory bowel disease treatment: a hub for multiple inflammatory cytokines. Am J Physiol Gastrointest Liver Physiol. 2016;310:G155–G162.

    PubMed  Google Scholar 

  39. Agrawal M, Kim ES, Colombel JF. JAK inhibitors safety in ulcerative colitis: practical implications. J Crohns Colitis. 2020;. https://doi.org/10.1093/ecco-jcc/jjaa017.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hazel K, O’Connor A. Emerging treatments for inflammatory bowel disease. Ther Adv Chronic Dis. 2020;11:1–12.

    Google Scholar 

  41. Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: rationale, progress, and caution. Pharmacol Rev. 2020;72:486–526.

    PubMed  PubMed Central  Google Scholar 

  42. Bechman K, Yates M, Galloway JB. The new entries in the therapeutic armamentarium: the small molecule JAK inhibitors. Pharmacol Res. 2019;147:104392. https://doi.org/10.1016/j.phrs.2019.104392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gotthardt D, Trifinopoulos J, Sexl V, Putz EM. JAK/STAT cytokine signaling at the crossroad of NK cell development and maturation. Front Immunol. 2019;10:2590. https://doi.org/10.3389/fimmu.2019.02590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Salas A, Hernandez-Rocha C, Duijvestein M, et al. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;. https://doi.org/10.1038/s41575-020-0273-0.

    Article  PubMed  Google Scholar 

  45. Muller R. JAK inhibitors in 2019, synthetic review in 10 points. Eur J Intern Med. 2019;66:9–17.

    PubMed  CAS  Google Scholar 

  46. Xin P, Xu X, Deng C, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 2020;80:106210. https://doi.org/10.1016/j.intimp.2020.106210.

    Article  PubMed  CAS  Google Scholar 

  47. Sandborn WJ, Su C, Sands BE, et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2017;376:1723–1736.

    CAS  PubMed  Google Scholar 

  48. Shukla T, Sands BE. Novel non-biologic targets for inflammatory bowel disease. Curr Gastroenterol Rep. 2019;21:22.

    PubMed  Google Scholar 

  49. Sandborn WJ, Ghosh S, Panes J, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med. 2012;367:616–624.

    PubMed  CAS  Google Scholar 

  50. Ma C, Battat R, Dulai PS, et al. Innovations in oral therapies for inflammatory bowel disease. Drugs. 2019;79:1321–1335.

    PubMed  CAS  Google Scholar 

  51. Sandborn WJ, Ghosh S, Panes J, Vranic I, Wang W, Niezychowski W. A phase 2 study of tofacitinib, an oral Janus kinase inhibitor, in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2014;12:1485–1493.

    PubMed  CAS  Google Scholar 

  52. Panes J, Sandborn WJ, Schreiber S, et al. Tofacitinib for induction and maintenance therapy of Crohn’s disease: results of two phase IIb randomised placebo-controlled trials. Gut. 2017;66:1049–1059.

    PubMed  CAS  Google Scholar 

  53. Lefevre PLC, Vande Casteele N. Clinical pharmacology of janus kinase inhibitors in inflammatory bowel disease. J Crohns Colitis. 2020;. https://doi.org/10.1093/ecco-jcc/jjaa014.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xu P, Shen P, Yu B, et al. Janus kinases (JAKs): the efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. Eur J Med Chem. 2020;192:112155. https://doi.org/10.1016/j.ejmech.2020.112155.

    Article  PubMed  CAS  Google Scholar 

  55. Sandborn WJ, Feagan BG, Loftus EV, et al. Efficacy and safety of upadacitinib in a randomized trial of patients with Crohn’s disease. Gastroenterology. 2020;. https://doi.org/10.1053/j.gastro.2020.01.047.

    Article  PubMed  Google Scholar 

  56. Sandborn WJ, Ghosh S, Panes J, et al. Efficacy of upadacitinib in a randomized trial of patients with active ulcerative colitis. Gastroenterology. 2020;. https://doi.org/10.1053/j.gastro.2020.02.030.

    Article  PubMed  Google Scholar 

  57. Vermeire S, Schreiber S, Petryka R, et al. Clinical remission in patients with moderate-to-severe Crohn’s disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet. 2017;389:266–275.

    PubMed  CAS  Google Scholar 

  58. Duijvestein M, Jeyarajah J, Guizzetti L, et al. Response to placebo, measured by endoscopic evaluation of Crohn’s disease activity, in a pooled analysis of data from 5 randomized controlled induction trials. Clin Gastroenterol Hepatol. 2020;18:1121–1132.

    PubMed  CAS  Google Scholar 

  59. Gilead and Galapagos Announce Positive Topline Results of phase 2b/3 Trial of Filgotinib in Moderately to Severely Active Ulcerative Colitis, May 20, 2020. www.Gilead.com/news-and-press/press-room/press-releases/2020.

  60. Obinata H, Hla T. Sphingosine 1-phosphate and inflammation. Int Immunol. 2019;31:617–625.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Sandborn WJ, Feagan BG, Wolf DC, et al. Ozanimod induction and maintenance treatment for ulcerative colitis. N Engl J Med. 2016;374:1754–1762.

    CAS  PubMed  Google Scholar 

  62. Sandborn WJ, Peyrin-Biroulet L, Zhang J, et al. Efficacy and safety of etrasimod in a phase 2 randomized trial of patients with ulcerative colitis. Gastroenterology. 2020;158:550–561.

    PubMed  CAS  Google Scholar 

  63. D’haens G, Danese S, Davies M, Watanabe M, Hibi T. DOP48 Amiselimod, a selective S1P receptor modulator in Crohn’s disease patients: a proof-of-concept study. J Crohns Colitis. 2019;13:S055–S056.

    Google Scholar 

  64. Salari-Sharif P, Abdollahi M. Phosphodiesterase 4 inhibitors in inflammatory bowel disease: a comprehensive review. Curr Pharm Des. 2010;16:3661–3667.

    PubMed  CAS  Google Scholar 

  65. Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol. 2018;9:1048.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Danese S, Neurath MF, Kopon A, et al. Effects of apremilast, an oral inhibitor of phosphodiesterase 4, in a randomized trial of patients with active ulcerative colitis. Clin Gastroenterol Hepatol. 2020;. https://doi.org/10.1016/j.cgh.2019.12.032.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Schwartz DA, Loftus EV Jr, Tremaine WJ, et al. The natural history of fistulizing Crohn’s disease in Olmsted County. Minn Gastroenterol. 2002;122:875–880.

    Google Scholar 

  68. Scharl M, Rogler G. Pathophysiology of fistula formation in Crohn’s disease. World J Gastrointest Pathophysiol. 2014;5:205–212.

    PubMed  PubMed Central  Google Scholar 

  69. Molendijk I, Nuij VJ, van der Meulen-de Jong AE, van der Woude CJ. Disappointing durable remission rates in complex Crohn’s disease fistula. Inflamm Bowel Dis. 2014;20:2022–2028.

    PubMed  Google Scholar 

  70. Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6:457–478.

    PubMed  CAS  Google Scholar 

  71. Panes J, Garcia-Olmo D, Van Assche G, et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial. Lancet. 2016;388:1281–1290.

    PubMed  Google Scholar 

  72. Panes J, Garcia-Olmo D, Van Assche G, et al. Long-term efficacy and safety of stem cell therapy (Cx601) for complex perianal fistulas in patients with Crohn’s disease. Gastroenterology. 2018;154:1334–1342.

    PubMed  Google Scholar 

  73. Ti Genix and Takeda announce Alofisel (darvadstrocel) receives approval to treat complex perianal fistulas in Crohn’s disease in Europe. Belgium. Mar 23, 2018. www.takeda.com/newsroom/newsreleases/2018/tigenex-and-takeda-announce-alofisel-receives-approval-in-europe.

Download references

Author information

Authors and Affiliations

Authors

Contributions

NN, PGY-1, resident in internal medicine, wrote the manuscript, contributed to the final edits, and approved the final manuscript. ZWR, PGY-5, fellow in gastroenterology, wrote the manuscript, contributed to the final edits, and approved the final manuscript. ACE, attending in gastroenterology, wrote the manuscript, contributed to the final edits, and approved the final manuscript. FF developed the topic and outline of the manuscript, wrote the manuscript, contributed to the final edits, and approved the final manuscript.

Corresponding author

Correspondence to Frank Friedenberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadpara, N., Reichenbach, Z.W., Ehrlich, A.C. et al. Current Status of Medical Therapy for Inflammatory Bowel Disease: The Wealth of Medications. Dig Dis Sci 65, 2769–2779 (2020). https://doi.org/10.1007/s10620-020-06471-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06471-4

Keywords

Navigation