Skip to main content
Log in

Inhibition of Ferroptosis Attenuates Acute Kidney Injury in Rats with Severe Acute Pancreatitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Acute kidney injury (AKI) is a frequent complication of severe acute pancreatitis (SAP). Ferroptosis is involved in a range of diseases. However, the role of ferroptosis in SAP-induced AKI has yet to be elucidated.

Aims

We aimed to investigate whether ferroptosis is induced in the kidney after SAP and whether inhibition of ferroptosis ameliorates AKI in a rat model of SAP.

Methods

Sodium taurocholate (5%) was retrogradely perfused into the biliopancreatic duct to establish a model of SAP with AKI in rats. The levels of serum amylase, lipase, tumor necrosis factor (TNF)-α, interleukin (IL)-6, creatinine (Cr) and blood urea nitrogen (BUN) in rats were measured. We also determined the biochemical and morphological changes associated with ferroptosis in renal tissue, including iron accumulation, lipid peroxidation assays, and mitochondrial shrinkage. H&E staining was used to assess pancreatic and renal histological changes. Western blot analysis, RT-PCR, and immunofluorescence staining were performed to analyze the expression of ferroptosis-related proteins and genes.

Results

SAP-induced AKI was followed by iron accumulation, increased lipid peroxidation, and upregulation of ferroptosis-related proteins and genes. Twenty-four hours after SAP, TEM confirmed the presence of typical shrunken mitochondria. Furthermore, treatment with liproxstatin-1 lowered the levels of serum amylase, TNF-α, IL-6, Cr and BUN, decreased kidney lipid peroxidation and alleviated pancreatic and renal histopathology injury in SAP rats.

Conclusion

Our findings are the first to demonstrate the involvement of ferroptosis in SAP-associated renal damage and present ferroptosis as a therapeutic target for effective treatment of SAP-induced AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Forsmark CE, Vege SS, Wilcox CM. Acute pancreatitis. N Engl J Med. 2016;375:1972–1981.

    Article  CAS  PubMed  Google Scholar 

  2. Frossard JL, Steer ML, Pastor CM. Acute pancreatitis. Lancet. 2008;371:143–152.

    Article  PubMed  Google Scholar 

  3. Singh VK, Wu BU, Bollen TL, et al. Early systemic inflammatory response syndrome is associated with severe acute pancreatitis. Clin Gastroenterol Hepatol. 2009;7:1247–1251.

    Article  PubMed  Google Scholar 

  4. Zhou JJ, Li Y, Tang Y, et al. Effect of acute kidney injury on mortality and hospital stay in patient with severe acute pancreatitis. Nephrology (Carlton). 2015;20:485–491.

    Article  Google Scholar 

  5. Kumar R, Pahwa N, Jain N. Acute kidney injury in severe acute pancreatitis: an experience from a tertiary care center. Saudi J Kidney Dis Transpl. 2015;26:56–60.

    Article  PubMed  Google Scholar 

  6. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–R212.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Herrera GME, Seller PG, de La Rubia D, et al. Acute renal failure profile and prognostic value in severe acute pancreatitis. Med Clin (Barc). 2000;115:721–725.

    Article  Google Scholar 

  8. Pupelis G. Renal failure in acute pancreatitis. Timing of dialysis and surgery. Prz. Lek.. 2000;57:29–31.

    Google Scholar 

  9. Li H, Qian ZX, Liu ZL, Liu XL, Han XT, Kang H. Risk factors and outcome of acute renal failure in patients with severe acute pancreatitis. J Crit Care. 2010;25:225–229.

    Article  CAS  PubMed  Google Scholar 

  10. Schönfeld P, Wieckowski MR, Lebiedzińska M, Wojtczak L. Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species. Biochim Biophys Acta. 2010;1797:929–938.

    Article  PubMed  Google Scholar 

  11. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121:4210–4221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lachaier E, Louandre C, Godin C, et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res. 2014;34:6417–6422.

    CAS  PubMed  Google Scholar 

  14. Li Q, Han XN, Lan X, et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight. 2017;2:e90777.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tuo QZ, Lei P, Jackman KA, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 2017;22:1520–1530.

    Article  CAS  PubMed  Google Scholar 

  16. Martin-Sanchez D, Ruiz-Andres O, Poveda J, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol. 2017;28:218–229.

    Article  CAS  PubMed  Google Scholar 

  17. Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. 2019;133:221–233.

    Article  CAS  PubMed  Google Scholar 

  19. Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol. 2017;403:143–170.

    CAS  PubMed  Google Scholar 

  20. Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13:91–98.

    Article  CAS  PubMed  Google Scholar 

  22. Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13:81–90.

    Article  CAS  PubMed  Google Scholar 

  23. Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sheng X, Shan C, Liu J, Yang J, Sun B, Chen D. Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1. Phys Chem Chem Phys. 2017;19:13153–13159.

    Article  CAS  PubMed  Google Scholar 

  25. Guerrero-Hue M, García-Caballero C, Palomino-Antolín A, et al. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J. 2019;33:8961–8975.

    Article  CAS  PubMed  Google Scholar 

  26. Huang L, Jiang Y, Sun Z, Gao Z, Wang J, Zhang D. Autophagy strengthens intestinal mucosal barrier by attenuating oxidative stress in severe acute pancreatitis. Dig Dis Sci. 2018;63:910–919. https://doi.org/10.1007/s10620-018-4962-2.

    Article  CAS  PubMed  Google Scholar 

  27. Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–1191.

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Feng D, Wang Z, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019;26:2284–2299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao X, Zhang Y, Li J, et al. Tissue pharmacology of Da-Cheng-Qi decoction in experimental acute pancreatitis in rats. Evid Based Complement Alternat Med. 2015;2015:283175.

    PubMed  PubMed Central  Google Scholar 

  30. Zhang YM, Ren HY, Zhao XL, et al. Pharmacokinetics and pharmacodynamics of Da-Cheng-Qi decoction in the liver of rats with severe acute pancreatitis. World J Gastroenterol. 2017;23:1367–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Vet Pathol. 2013;50:1007–1015.

    Article  CAS  PubMed  Google Scholar 

  32. Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73:2195–2209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–152.

    Article  CAS  PubMed  Google Scholar 

  34. Cardoso BR, Hare DJ, Bush AI, Roberts BR. Glutathione peroxidase 4: a new player in neurodegeneration? Mol Psychiatry.. 2017;22:328–335.

    Article  CAS  PubMed  Google Scholar 

  35. Maiorino M, Conrad M, Ursini F. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxid Redox Signal. 2018;29:61–74.

    Article  CAS  PubMed  Google Scholar 

  36. Makhija R, Kingsnorth AN. Cytokine storm in acute pancreatitis. J Hepatobiliary Pancreat Surg. 2002;9:401–410.

    Article  PubMed  Google Scholar 

  37. Ge N, Xia Q, Yang ZH, Ding QF, Zeng Z. Vascular endothelial injury and apoptosis in rats with severe acute pancreatitis. Gastroenterol Res Pract.. 2015;2015:235017.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Angeli JPF, Shah R, Pratt DA, Conrad M. Ferroptosis inhibition: mechanisms and opportunities. Trends Pharmacol Sci. 2017;38:489–498.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China Grant Nos. 81270448 and 81470890.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianliang Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Li, C., Jiang, P. et al. Inhibition of Ferroptosis Attenuates Acute Kidney Injury in Rats with Severe Acute Pancreatitis. Dig Dis Sci 66, 483–492 (2021). https://doi.org/10.1007/s10620-020-06225-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06225-2

Keywords

Navigation