Skip to main content

Advertisement

Log in

Ontogenesis and Modulation of Intestinal Unesterified Cholesterol Sequestration in a Mouse Model of Niemann–Pick C1 Disease

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Mutations in the NPC1 gene result in sequestration of unesterified cholesterol (UC) and glycosphingolipids in most tissues leading to multi-organ disease, especially in the brain, liver, lungs, and spleen. Various data from NPC1-deficient mice suggest the small intestine (SI) is comparatively less affected, even in late stage disease.

Methods

Using the Npc1nih mouse model, we measured SI weights and total cholesterol (TC) levels in Npc1/ versus Npc1+/+ mice as a function of age, and then after prolonged ezetimibe-induced inhibition of cholesterol absorption. Next, we determined intestinal levels of UC and esterified cholesterol (EC), and cholesterol synthesis rates in Npc1/ and Npc1+/+ mice, with and without the cholesterol-esterifying enzyme SOAT2, following a once-only subcutaneous injection with 2-hydroxypropyl-β-cyclodextrin (2HPβCD).

Results

By ~ 42 days of age, intestinal TC levels averaged ~ 2.1-fold more (mostly UC) in the Npc1/ versus Npc1+/+ mice with no further increase thereafter. Chronic ezetimibe treatment lowered intestinal TC levels in the Npc1/ mice by only ~ 16%. In Npc1/ mice given 2HPβCD 24 h earlier, UC levels fell, EC levels increased (although less so in mice lacking SOAT2), and cholesterol synthesis was suppressed equally in the Npc1/:Soat2+/+ and Npc1/:Soat2/ mice.

Conclusions

The low and static levels of intestinal UC sequestration in Npc1/ mice likely reflect the continual sloughing of cells from the mucosa. This sequestration is blunted by about the same extent following a single acute treatment with 2HPβCD as it is by a prolonged ezetimibe-induced block of cholesterol absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kwon HJ, Abi-Mosleh L, Wang ML, et al. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell. 2009;137:1213–1224.

    PubMed  PubMed Central  Google Scholar 

  2. Peake KB, Vance JE. Defective cholesterol trafficking in Niemann–Pick C-deficient cells. FEBS Lett. 2010;584:2731–2739.

    CAS  PubMed  Google Scholar 

  3. Vanier MT. Niemann–Pick disease type C. Orphanet J Rare Dis. 2010;5:16.

    PubMed  PubMed Central  Google Scholar 

  4. Vanier MT. Biochemical studies in Niemann–Pick disease. 1. Major sphingolipids of liver and spleen. Biochim Biophys Acta. 1983;750:178–184.

    CAS  PubMed  Google Scholar 

  5. Yadid G, Sotnik-Barkai I, Tomatore C, et al. Neurochemical alterations in the cerebellum of a murine model of Niemann–Pick type C disease. Brain Res. 1998;799:250–256.

    CAS  PubMed  Google Scholar 

  6. Xie C, Turley SD, Pentchev PG, Dietschy JM. Cholesterol balance and metabolism in mice with loss of function of Niemann–Pick C protein. Am J Physiol Endocrinol Metab. 1999;276:E336–E344.

    CAS  Google Scholar 

  7. Sarna JR, Larouche M, Marzban H, Sillitoe RV, Rancourt DE, Hawkes R. Patterned Purkinje cell degeneration in mouse models of Niemann–Pick type C disease. J Comp Neurol. 2003;456:279–291.

    PubMed  Google Scholar 

  8. Beltroy EP, Richardson JA, Horton JD, Turley SD, Dietschy JM. Cholesterol accumulation and liver cell death in mice with Niemann–Pick type C disease. Hepatology. 2005;42:886–893.

    CAS  PubMed  Google Scholar 

  9. Li H, Repa JJ, Valasek MA, et al. Molecular, anatomical, and biochemical events associated with neurodegeneration in mice with Niemann–Pick type C disease. J Neuropathol Exp Neurol. 2005;64:323–333.

    CAS  PubMed  Google Scholar 

  10. Garver WS, Jelinek D, Oyarzo JN, et al. Characterization of liver disease and lipid metabolism in the Niemann–Pick Cl mouse. J Cell Biochem. 2007;101:1498–1516.

    Google Scholar 

  11. Liu B, Xie C, Richardson JA, Turley SD, Dietschy JM. Receptor-mediated and bulk-phase endocytosis cause macrophage and cholesterol accumulation in Niemann–Pick C disease. J Lipid Res. 2007;48:1710–1723.

    CAS  PubMed  Google Scholar 

  12. Vite CH, Ding W, Bryan C, et al. Clinical, electrophysiological, and serum biochemical measures of progressive neurological and hepatic dysfunction in feline Niemann–Pick type C disease. Pediatr Res.. 2008;64:544–549.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Griese M, Brasch F, Aldana VR, et al. Respiratory disease in Niemann–Pick type C2 is caused by pulmonary alveolar proteinosis. Clin Genet. 2010;77:119–130.

    CAS  PubMed  Google Scholar 

  14. Muralidhar A, Borbon IA, Esharif DM, et al. Pulmonary function and pathology in hydroxypropyl-beta-cyclodextrin-treated and untreated Npc1/ mice. Mol Genet Metab. 2011;103:142–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Roszell BR, Tao J-Q, Yu KJ, et al. Pulmonary abnormalities in animal models due to Niemann–Pick type C1 (NPCl) or C2 (NPC2) disease. PLoS ONE. 2013;8:e67084.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Buard I, Pfrieger FW. Relevance of neuronal and glial NPCl for synaptic input to cerebellar Purkinje cells. Mol Cell Neurosci. 2014;61:65–71.

    CAS  PubMed  Google Scholar 

  17. Ramirez CM, Lopez AM, Le LQ, Posey KS, Weinberg AC, Turley SD. Ontogenic changes in lung cholesterol metabolism, lipid content, and histology in mice with Niemann–Pick type C disease. Biochim Biophys Acta. 2014;1841:54–61.

    CAS  PubMed  Google Scholar 

  18. Totenhagen JW, Bernstein A, Yoshimaru ES, Erickson RP, Trouard TP. Quantitative magnetic resonance imaging of brain atrophy in a mouse model of Niemann–Pick type C disease. PLoS ONE. 2017;12:e0178179.

    PubMed  PubMed Central  Google Scholar 

  19. Staretz-Chacham O, Aviram M, Morag I, Goldbart A, Hershkovitz E. Pulmonary involvement in Niemann–Pick C type 1. Eur J Pediatr. 2018;177:1609–1615.

    PubMed  Google Scholar 

  20. Morris MD, Bhuvaneswaran C, Shio H, Fowler S. Lysosome lipid storage disorder in NCTR-BALB/c mice. 1. Description of the disease and genetics. Am J Pathol. 1982;108:140–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu B, Ramirez CM, Miller AM, Repa JJ, Turley SD, Dietschy JM. Cyclodextrin overcomes the transport defect in nearly every organ of NPC1 mice leading to excretion of sequestered cholesterol as bile acid. J Lipid Res. 2010;51:933–944.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Vite CH, Bagel JH, Swain GP, et al. Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann–Pick C1 disease. Sci Transl Med. 2015;7:276ra26.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Munkacsi AB, Hammond N, Schneider RT, et al. Normalization of hepatic homeostasis in the Npc1 nmf164 mouse model of Niemann–Pick type C disease treated with the histone deacetylase inhibitor vorinostat. J Biol Chem. 2017;292:4395–4410.

    CAS  PubMed  Google Scholar 

  24. Davis HR Jr, Altmann SW. Niemann–Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter. Biochim Biophys Acta. 2009;1791:679–683.

    CAS  PubMed  Google Scholar 

  25. Beltroy EP, Liu B, Dietschy JM, Turley SD. Lysosomal unesterified cholesterol content correlates with liver cell death in murine Niemann–Pick type C disease. J Lipid Res. 2007;48:869–881.

    CAS  PubMed  Google Scholar 

  26. Lopez AM, Jones RD, Repa JJ, Turley SD. Niemann–Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function. Am J Physiol Gastrointest Liver Physiol. 2018;315:G454–G463.

    PubMed  PubMed Central  Google Scholar 

  27. Wang DQ-H. Regulation of intestinal cholesterol absorption. Ann Rev Physiol. 2007;69:221–248.

    CAS  Google Scholar 

  28. Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res. 2015;56:1085–1099.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang F, Kohan AB, Lo C-M, Liu M, Howles P, Tso P. Apolipoprotein A-IV: a protein intimately involved in metabolism. J Lipid Res. 2015;56:1403–1418.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Spady DK, Dietschy JM. Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster, and rat. J Lipid Res. 1983;24:303–315.

    CAS  PubMed  Google Scholar 

  31. Xie C, Turley SD, Dietschy JM. Cholesterol accumulation in tissues of the Niemann–Pick type C mouse is determined by the rate of lipoprotein-cholesterol uptake through the coated-pit pathway in each organ. Proc Natl Acad Sci USA. 1999;96:11992–11997.

    CAS  PubMed  Google Scholar 

  32. Schwerd T, Pandey S, Yang H-T, et al. Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann–Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn’s disease. Gut. 2017;66:1060–1073.

    CAS  PubMed  Google Scholar 

  33. Cougnoux A, Movassaghi M, Picache JA, et al. Gastrointestinal tract pathology in a Balb/c Niemann–Pick disease type C1 null mouse model. Dig Dis Sci. 2018;63:870–880.

    PubMed  PubMed Central  Google Scholar 

  34. Kapur R, Donohue C, Jelinek D, Erickson RP. Amelioration of enteric neuropathology in a mouse model of Niemann–Pick C by Npc1 expression in enteric glia. J Neurosci Res. 2009;87:2994–3001.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dixit SS, Sleat DE, Stock AM, Lobel P. Do mammalian NPC1 and NPC2 play a role in intestinal cholesterol absorption? Biochem J. 2007;408:1–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramirez CM, Liu B, Aqul A, et al. Quantitative role of LAL, NPC2, and NPC1 in lysosomal cholesterol processing defined by genetic and pharmacological manipulations. J Lipid Res. 2011;52:688–698.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramirez CM, Liu B, Taylor A, et al. Weekly cyclodextrin administration normalizes cholesterol metabolism in nearly every organ of the Niemann–Pick type C1 mouse and markedly prolongs life. Pediatr Res. 2010;68:309–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pentchev PG. Niemann–Pick C research from mouse to gene. Biochim Biophys Acta. 2004;1685:3–7.

    CAS  PubMed  Google Scholar 

  39. Turley SD, Valasek MA, Repa JJ, Dietschy JM. Multiple mechanisms limit the accumulation of unesterified cholesterol in the small intestine of mice deficient in both ACAT2 and ABCA1. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1012–G1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Aqul A, Lopez AM, Posey KS, et al. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice. Am J Physiol Gastrointest Liver Physiol. 2014;307:G836–G847.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lopez AM, Chuang J-C, Turley SD. Measurement of rates of cholesterol and fatty acid synthesis in vivo using tritiated water. In: Gelissen IC, Brown AJ, eds. Cholesterol Homeostasis: Methods and Protocols. New York, NY: Humana; 2017:241–256.

    Google Scholar 

  42. Noah TK, Donahue B, Shroyer NF. Intestinal development and differentiation. Exp Cell Res. 2011;317:2702–2710.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Repa JJ, Turley SD, Quan G, Dietschy JM. Delineation of molecular changes in intrahepatic cholesterol metabolism resulting from diminished cholesterol absorption. J Lipid Res. 2005;46:779–789.

    CAS  PubMed  Google Scholar 

  44. Pentchev PG, Gal AE, Booth AD, et al. A lysosomal storage disorder in mice characterized by a dual deficiency of sphingomyelinase and glucocerebrosidase. Biochim Biophys Acta. 1980;619:669–679.

    CAS  PubMed  Google Scholar 

  45. Wang TY, Liu M, Portincasa P, Wang DQ-H. New insights into the molecular mechanism of intestinal fatty acid absorption. Eur J Clin Investig. 2013;43:1203–1223.

    CAS  Google Scholar 

  46. Hung Y-H, Carreiro AL, Buhman KK. Dgat1 and Dgat2 regulate enterocyte triacylglycerol distribution and alter proteins associated with cytoplasmic lipid droplets in response to dietary fat. Biochim Biophys Acta. 2017;1862:600–614.

    CAS  PubMed Central  Google Scholar 

  47. Vrins CLJ. From blood to gut: direct secretion of cholesterol via transintestinal cholesterol efflux. World J Gastroenterol. 2010;16:5953–5957.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang DQ-H, Carey MC. Measurement of intestinal cholesterol absorption by plasma and fecal dual-isotope ratio, mass balance, and lymph fistula methods in the mouse: an analysis of direct versus indirect methodologies. J Lipid Res. 2003;44:1042–1059.

    CAS  PubMed  Google Scholar 

  49. Repa JJ, Buhman KK, Farese RV Jr, Dietschy JM, Turley SD. ACAT2 deficiency limits cholesterol absorption in the cholesterol-fed mouse: impact on hepatic cholesterol homeostasis. Hepatology. 2004;40:1088–1097.

    CAS  PubMed  Google Scholar 

  50. Langheim S, Yu L, von Bergmann K, et al. ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile. J Lipid Res. 2005;46:1732–1738.

    CAS  PubMed  Google Scholar 

  51. Wang DQ-H, Tazuma S, Cohen DE, Carey MC. Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse. Am J Physiol Gastrointest Liver Physiol. 2003;285:G494–G502.

    CAS  PubMed  Google Scholar 

  52. Ponz de Leon M, Iori R, Barbolini G, Pompei G, Zaniol P, Carulli N. Influence of small-bowel transit time on dietary cholesterol absorption in human beings. New Engl J Med. 1982;307:102–103.

    CAS  PubMed  Google Scholar 

  53. Wang DQ-H, Schmitz F, Kopin AS, Carey MC. Targeted disruption of the murine cholecystokinin-1 receptor promotes intestinal cholesterol absorption and susceptibility to cholesterol cholelithiasis. J Clin Investig. 2004;114:521–528.

    CAS  PubMed  Google Scholar 

  54. Amigo L, Mendoza H, Castro J, Quiñones V, Miquel JF, Zanlungo S. Relevance of Niemann–Pick type C1 protein expression in controlling plasma cholesterol and biliary lipid secretion in mice. Hepatology. 2002;36:819–828.

    CAS  PubMed  Google Scholar 

  55. Liu B, Turley SD, Burns DK, Miller AM, Repa JJ, Dietschy JM. Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1 / mouse. Proc Natl Acad Sci USA. 2009;106:2377–2382.

    CAS  PubMed  Google Scholar 

  56. Cooper AD. Hepatic uptake of chylomicron remnants. J Lipid Res. 1997;38:2173–2192.

    CAS  PubMed  Google Scholar 

  57. van Heek M, Compton DS, Davis HR. The cholesterol absorption inhibitor, ezetimibe, decreases diet-induced hypercholesterolemia in monkeys. Eur J Pharmacol. 2001;415:79–84.

    PubMed  Google Scholar 

  58. Zhang J, Kelley KL, Marshall SM, et al. Tissue-specific knockouts of ACAT2 reveal that intestinal depletion is sufficient to prevent diet-induced cholesterol accumulation in the liver and blood. J Lipid Res. 2012;53:1144–1152.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang J, Sawyer JK, Marshall SM, et al. Cholesterol esters (CE) derived from hepatic sterol O-acyltransferase 2 (SOAT2) are associated with more atherosclerosis than CE from intestinal SOAT2. Circ Res. 2014;115:826–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Engelking LJ, McFarlane MR, Li CK, Liang G. Blockade of cholesterol absorption by ezetimibe reveals a complex homeostatic network in enterocytes. J Lipid Res. 2012;53:1359–1368.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Drouin-Chartier J-P, Tremblay AJ, Lemelin V, Lépine M-C, Lamarche B, Couture P. Ezetimibe increases intestinal expression of the LDL receptor gene in dyslipidaemic men with insulin resistance. Diabetes Obes Metab. 2016;18:1226–1235.

    CAS  PubMed  Google Scholar 

  62. Rocco MD, Pisciotta L, Madeo A, Bertamino M, Bertolini S. Long term substrate reduction therapy with ezetimibe alone or associated with statins in three adult patients with lysosomal acid lipase deficiency. Orphanet J Rare Dis. 2018;13:24.

    PubMed  PubMed Central  Google Scholar 

  63. Davidson CD, Ali NF, Micsenyi MC, et al. Chronic cyclodextrin treatment of murine Niemann–Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS ONE. 2009;4:e6951.

    PubMed  PubMed Central  Google Scholar 

  64. Taylor AM, Liu B, Mari Y, Liu B, Repa JJ. Cyclodextrin mediates rapid changes in lipid balance in Npc1 / mice without carrying cholesterol through the bloodstream. J Lipid Res. 2012;53:2331–2342.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chang CCY, Sakashita N, Ornvold K, et al. Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. J Biol Chem. 2000;275:28083–28092.

    CAS  PubMed  Google Scholar 

  66. Lee RG, Willingham MC, Davis MA, Skinner KA, Rudel LL. Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of non-human primates. J Lipid Res. 2000;41:1991–2001.

    CAS  PubMed  Google Scholar 

  67. Lee JW, Huang J-D, Rodriguez IR. Extra-hepatic metabolism of 7-ketocholesterol occurs by esterification to fatty acids via cPLA2α and SOAT1 followed by selective efflux to HDL. Biochim Biophys Acta.. 2015;1851:605–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Investig. 2002;110:905–911.

    CAS  PubMed  Google Scholar 

  69. Aqul A, Liu B, Ramirez C, et al. Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J Neurosci. 2011;31:9404–9413.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ory DS, Ottinger EA, Farhat NY, et al. Intrathecal 2-hydroxypropyl-β-cyclodextrin decreases neurological disease progression in Niemann–Pick disease, type C1: a non-randomised, open-label, phase 1–2 trial. The Lancet. 2017;390:1758–1768.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Lawrence Rudel of Wake Forest University School of Medicine for helpful discussions about cholesterol-esterifying enzymes in the small intestine and Dr. Harry R. Davis Jr., previously at Merck & Co. Inc., for a gift of ezetimibe. Heather Waddell, Carolyn Crumpton, Monti Schneiderman, and Stephen Ostermann provided excellent technical assistance.

Funding

This research was supported by National Institutes of Health Grants R01 HL 009610 (SDT) and DK 078592 (JJR) and the Ara Parseghian Medical Research Foundation (JJR).

Author information

Authors and Affiliations

Authors

Contributions

AML, CMR, AMT, RDJ, JJR, and SDT all had varying but significant roles in the conception and design of the research, performance of experiments, calculation and interpretation of the data, and the preparation of the initial draft of the manuscript. JJR performed statistical analyses, and SDT finalized the manuscript for submission. All authors approved the final manuscript.

Corresponding author

Correspondence to Stephen D. Turley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, A.M., Ramirez, C.M., Taylor, A.M. et al. Ontogenesis and Modulation of Intestinal Unesterified Cholesterol Sequestration in a Mouse Model of Niemann–Pick C1 Disease. Dig Dis Sci 65, 158–167 (2020). https://doi.org/10.1007/s10620-019-05736-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05736-x

Keywords

Navigation