Skip to main content

Advertisement

Log in

Changes in Clock Genes Expression in Esophagus in Rat Reflux Esophagitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Gastroesophageal reflux disease (GERD) is strongly associated with sleep disturbances. Clock genes harmonize circadian rhythms by their periodic expression and regulate several physiological functions. However, the association between clock genes and GERD is still unknown.

Aims

We investigated whether reflux esophagitis affects circadian variability of clock genes in the esophagus and other organs using a rat reflux esophagitis model.

Methods

Reflux esophagitis was induced in 7-week-old male Wistar rats. Sham-operated rats were used as controls. Rats were killed at 09:00 (light period) and 21:00 (dark period) 3 days (acute phase) and 21 days (chronic phase) after induction of esophagitis. The expression levels of clock gene mRNAs such as Per1, Per2, Per3, Cry1, Cry2, Arntl, and Clock in the esophagus were investigated by qPCR. Arntl expression was examined in stomach, small intestine, colon, and liver tissues. Serum melatonin and IL-6 levels were measured by ELISA.

Results

Histological examination of reflux esophagitis mainly revealed epithelial defects with marked inflammatory cell infiltration in the acute phase and mucosal thickening with basal cell hyperplasia in the chronic phase. Circadian variability of clock genes, except Cry1, was present in the normal esophagus and was completely disrupted in reflux esophagitis during the acute phase. The circadian variability of Per2, Per3, and Arntl returned to normal, but disruption of Per1, Cry2, and Clock was present in the chronic phase. Disruption of circadian variability of Arntl was observed in the esophagus, as well as in the stomach, small intestine, and liver tissues in reflux esophagitis during the acute phase. There were no significant differences in serum melatonin and IL-6 levels between control and reflux esophagitis animals in both acute and chronic phases.

Conclusions

Disruption to circadian variability of clock genes may play a role in the pathogenesis of GERD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fujiwara Y, Arakawa T. Epidemiology and clinical characteristics of GERD in the Japanese population. J Gastroenterol. 2009;44:518–534. https://doi.org/10.1007/s00535-009-0047-5.

    Article  PubMed  Google Scholar 

  2. Fujiwara Y, Arakawa T, Fass R. Gastroesophageal reflux disease and sleep disturbances. J Gastroenterol. 2012;47:760–769. https://doi.org/10.1007/s00535-012-0601-4.

    Article  CAS  PubMed  Google Scholar 

  3. Suganuma N, Shigedo Y, Adachi H, et al. Association of gastroesophageal reflux disease with weight gain and apnea, and their disturbance on sleep. Psychiatry Clin Neurosci. 2001;55:255–256. https://doi.org/10.1046/j.1440-1819.2001.00848.x.

    Article  CAS  PubMed  Google Scholar 

  4. Shaker R, Castell DO, Schoenfeld PS, Spechler SJ. Nighttime heartburn is an under-appreciated clinical problem that impacts sleep and daytime function: the results of a Gallup survey conducted on behalf of the American Gastroenterological Association. Am J Gastroenterol. 2003;98:1487–1493. https://doi.org/10.1111/j.1572-0241.2003.07531.x.

    Article  PubMed  Google Scholar 

  5. Kusano M, Kouzu T, Kawano T, Ohara S. Nationwide epidemiological study on gastroesophageal reflux disease and sleep disorders in the Japanese population. J Gastroenterol. 2008;43:833–841. https://doi.org/10.1007/s00535-008-2235-0.

    Article  PubMed  Google Scholar 

  6. Nakahara K, Fujiwara Y, Tsukahara T, et al. Acid reflux directly causes sleep disturbances in rat with chronic esophagitis. PLoS ONE. 2014;9:e106969. https://doi.org/10.1371/journal.pone.0106969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dunlap JC. Molecular bases for circadian clocks. Cell. 1999;96:271–290.

    Article  CAS  PubMed  Google Scholar 

  8. Young MW, Kay SA. Time zones: a comparative genetics of circadian clocks. Nat Rev Genet. 2001;2:702–715. https://doi.org/10.1038/35088576.

    Article  CAS  PubMed  Google Scholar 

  9. Pacha J, Sumova A. Circadian regulation of epithelial functions in the intestine. Acta Physiol (Oxf). 2013;208:11–24. https://doi.org/10.1111/apha.12090.

    Article  CAS  Google Scholar 

  10. Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010;330:1349–1354. https://doi.org/10.1126/science.1195027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science. 2016;354:1004–1008. https://doi.org/10.1126/science.aah4968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genom Hum Genet. 2004;5:407–441. https://doi.org/10.1146/annurev.genom.5.061903.175925.

    Article  CAS  Google Scholar 

  13. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–549. https://doi.org/10.1146/annurev-physiol-021909-135821.

    Article  CAS  Google Scholar 

  14. Ackermann K, Plomp R, Lao O, et al. Effect of sleep deprivation on rhythms of clock gene expression and melatonin in humans. Chronobiol Int. 2013;30:901–909. https://doi.org/10.3109/07420528.2013.784773.

    Article  CAS  PubMed  Google Scholar 

  15. Hoogerwerf WA, Hellmich HL, Cornelissen G, et al. Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology. 2007;133:1250–1260. https://doi.org/10.1053/j.gastro.2007.07.009.

    Article  CAS  PubMed  Google Scholar 

  16. Mavroudis PD, DuBois DC, Almon RR, Jusko WJ. Daily variation of gene expression in diverse rat tissues. PLoS ONE. 2018;13:e0197258. https://doi.org/10.1371/journal.pone.0197258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang G, Wright CJ, Hinson MD, et al. Oxidative stress and inflammation modulate Rev-erbalpha signaling in the neonatal lung and affect circadian rhythmicity. Antioxid Redox Signal. 2014;21:17–32. https://doi.org/10.1089/ars.2013.5539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Omura N, Kashiwagi H, Chen G, Suzuki Y, Yano F, Aoki T. Establishment of surgically induced chronic acid reflux esophagitis in rats. Scand J Gastroenterol. 1999;34:948–953.

    Article  CAS  PubMed  Google Scholar 

  19. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–458. https://doi.org/10.1038/bmt.2012.244.

    Article  CAS  Google Scholar 

  20. De Araujo LD, Roa SL, Bueno AC, et al. Restricted feeding schedules modulate in a different manner the expression of clock genes in rat hypothalamic nuclei. Front Neurosci. 2016;10:567. https://doi.org/10.3389/fnins.2016.00567.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Westfall S, Aguilar-Valles A, Mongrain V, Luheshi GN, Cermakian N. Time-dependent effects of localized inflammation on peripheral clock gene expression in rats. PLoS ONE. 2013;8:e59808. https://doi.org/10.1371/journal.pone.0059808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fahrenkrug J, Hannibal J, Georg B. Diurnal rhythmicity of the canonical clock genes Per1, Per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy. J Neuroendocrinol. 2008;20:323–329. https://doi.org/10.1111/j.1365-2826.2008.01651.x.

    Article  CAS  PubMed  Google Scholar 

  23. Kouri VP, Olkkonen J, Kaivosoja E, et al. Circadian timekeeping is disturbed in rheumatoid arthritis at molecular level. PLoS ONE. 2013;8:e54049. https://doi.org/10.1371/journal.pone.0054049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zaslona Z, Case S, Early JO, et al. The circadian protein BMAL1 in myeloid cells is a negative regulator of allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2017;312:L855–L860. https://doi.org/10.1152/ajplung.00072.2017.

    Article  PubMed  Google Scholar 

  25. Mazzoccoli G, Palmieri O, Corritore G, et al. Association study of a polymorphism in clock gene PERIOD3 and risk of inflammatory bowel disease. Chronobiol Int. 2012;29:994–1003. https://doi.org/10.3109/07420528.2012.705935.

    Article  CAS  PubMed  Google Scholar 

  26. Yang SC, Chen CL, Yi CH, Liu TT, Shieh KR. Changes in gene expression patterns of circadian-clock, transient receptor potential vanilloid-1 and nerve growth factor in inflamed human esophagus. Sci Rep. 2015;5:13602. https://doi.org/10.1038/srep13602.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu X, Yu R, Zhu L, Hou X, Zou K. Bidirectional regulation of circadian disturbance and inflammation in inflammatory bowel disease. Inflamm Bowel Dis. 2017;23:1741–1751. https://doi.org/10.1097/MIB.0000000000001265.

    Article  PubMed  Google Scholar 

  28. Lundkvist GB, Sellix MT, Nygard M, et al. Clock gene expression during chronic inflammation induced by infection with Trypanosoma brucei brucei in rats. J Biol Rhythms. 2010;25:92–102. https://doi.org/10.1177/0748730409360963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cermakian N, Westfall S, Kiessling S. Circadian clocks and inflammation: reciprocal regulation and shared mediators. Arch Immunol Ther Exp (Warsz). 2014;62:303–318. https://doi.org/10.1007/s00005-014-0286-x.

    Article  CAS  Google Scholar 

  30. Swanson GR, Burgess HJ, Keshavarzian A. Sleep disturbances and inflammatory bowel disease: a potential trigger for disease flare? Expert Rev Clin Immunol. 2011;7:29–36. https://doi.org/10.1586/eci.10.83.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Palmieri O, Mazzoccoli G, Bossa F, et al. Systematic analysis of circadian genes using genome-wide cDNA microarrays in the inflammatory bowel disease transcriptome. Chronobiol Int. 2015;32:903–916. https://doi.org/10.3109/07420528.2015.1050726.

    Article  CAS  PubMed  Google Scholar 

  32. Rieder F, Biancani P, Harnett K, Yerian L, Falk GW. Inflammatory mediators in gastroesophageal reflux disease: impact on esophageal motility, fibrosis, and carcinogenesis. Am J Physiol Gastrointest Liver Physiol. 2010;298:G571–G581. https://doi.org/10.1152/ajpgi.00454.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kowalska E, Ripperger JA, Hoegger DC, et al. NONO couples the circadian clock to the cell cycle. Proc Natl Acad Sci USA. 2013;110:1592–1599. https://doi.org/10.1073/pnas.1213317110.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Emi Yoshioka for her technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.H. and Y.F. involved in study concept and design. A.H., R.U., A.S., and Y.F. helped in data acquisition. A.H. and Y.F. involved in analysis and interpretation of data. A.H. drafted the manuscript. A.H., R.U., A.S., Y.N., K.O., K.T., S.H., Y.N., F.T., N.K., H.Y., T.T., T.W., and Y.F. involved in the critical revision of the manuscript for important intellectual content and approval of the final version.

Corresponding author

Correspondence to Yasuhiro Fujiwara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, A., Uemura, R., Sawada, A. et al. Changes in Clock Genes Expression in Esophagus in Rat Reflux Esophagitis. Dig Dis Sci 64, 2132–2139 (2019). https://doi.org/10.1007/s10620-019-05546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05546-1

Keywords

Navigation