Skip to main content

Advertisement

Log in

Duodenoscope-Associated Infections: Update on an Emerging Problem

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The duodenoscope is among the most complex medical instruments that undergo disinfection between patients. Transmission of infection by contaminated scopes has remained a challenge since its inception. Notable risk factors for pathogen transmission include non-adherence to disinfection guidelines, encouragement of biofilm deposition due to complex design and surface defects and contaminated automated endoscope reprocessors. The most common infections following endoscopy are endogenous infections involving the patient’s own gut flora. Exogenous infections, on the other hand, are associated with contaminated scopes and can theoretically be prevented by effective reprocessing. Pseudomonas aeruginosa is currently the most common organism isolated from contaminated endoscopes. Of note, reports of multidrug-resistant duodenoscopy-associated outbreaks have surfaced recently, many of which occurred despite adequate reprocessing. The FDA and CDC currently recommend comprehensive cleaning followed with at least high-level disinfection for reprocessing of flexible GI endoscopes. Reports of duodenoscope-related outbreaks despite compliance with established guidelines have prompted professional and government bodies to revisit existing guidelines and offer supplementary recommendations for duodenoscope processing. For the purposes of this review, we identified reports of duodenoscope-associated infections from 2000 till date. For each outbreak, we noted the organisms isolated, the number of cases reported, any possible explanations of contamination, and the measures undertaken to end each outbreak. We have also attempted to present an overview of recent developments in this rapidly evolving field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Petersen BT, Cohen J, Hambrick RD, et al. Multisociety guideline on reprocessing flexible GI endoscopes: 2016 update. Gastrointest Endosc. 2017;85:282–294.

    Article  PubMed  Google Scholar 

  2. Preventable tragedies: Superbugs and How Ineffective Monitoring of Medical Device Safety Fails Patients. U.S. Senate Health, Education, Labor, and Pensions Committee; 2016.

  3. Nelson DB, Barkun AN, Block KP, et al. Technology status evaluation report. Transmission of infection by gastrointestinal endoscopy. May 2001. Gastrointest Endosc. 2001;54:824–828.

    Article  CAS  PubMed  Google Scholar 

  4. Kovaleva J, Peters FT, van der Mei HC, Degener JE. Transmission of infection by flexible gastrointestinal endoscopy and bronchoscopy. Clin Microbiol Rev. 2013;26:231–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rutala WA, Weber DJ, Healthcare Infection Control Practices Advisory Committee. Guideline for disinfection and sterilization in healthcare facilities. 2008. Available from: https://www.cdc.gov/ncidod/dhqp/pdf/guidelines/Disinfection_Nov_2008.pdf. Accessed 15 Jan 2018.

  6. Spaulding EH, Gröschel DH. Hospital disinfectants and antiseptics. Manual of clinical microbiology. 2nd ed. Washington, DC: American Society for Microbiology; 1974:852–857.

    Google Scholar 

  7. Spach DH, Silverstein FE, Stamm WE. Transmission of infection by gastrointestinal endoscopy and bronchoscopy. Ann Intern Med. 1993;118:117–128.

    Article  CAS  PubMed  Google Scholar 

  8. Banerjee S, Shen B, Nelson DB, et al. Infection control during GI endoscopy. Gastrointest Endosc. 2008;67:781–790.

    Article  PubMed  Google Scholar 

  9. Standards of infection prevention in reprocessing flexible gastrointestinal endoscopes. Society of Gastroenterology Nurses and Associates; 2015.

  10. Garner JS, Favero MS. CDC guidelines for the prevention and control of nosocomial infections. Guideline for handwashing and hospital environmental control, 1985. Supersedes guideline for hospital environmental control published in 1981. Am J Infect Control. 1986;14:110–129.

    Article  CAS  PubMed  Google Scholar 

  11. Brief summary of the gastroenterology and urology devices panel meeting. Food and Drug Administration; May, 2015.

  12. Muscarella LF. High-level disinfection or “sterilization” of endoscopes? Infect Control Hosp Epidemiol. 1996;17:183–187.

    CAS  PubMed  Google Scholar 

  13. Design of endoscopic retrograde cholangiopancreatography (ERCP) duodenoscopes may impede effective cleaning: FDA safety communication. Food and Drug Administration; 2015.

  14. Cowen AE. Infection and endoscopy: who infects whom? Scand J Gastroenterol Suppl. 1992;192:91–96.

    Article  CAS  PubMed  Google Scholar 

  15. Kovaleva J, Meessen NE, Peters FT, et al. Is bacteriologic surveillance in endoscope reprocessing stringent enough? Endoscopy. 2009;41:913–916.

    Article  CAS  PubMed  Google Scholar 

  16. Ross AS, Baliga C, Verma P, Duchin J, Gluck M. A quarantine process for the resolution of duodenoscope-associated transmission of multidrug-resistant Escherichia coli. Gastrointest Endosc. 2015;82:477–483.

    Article  PubMed  Google Scholar 

  17. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–745.

    Article  CAS  PubMed  Google Scholar 

  18. Pajkos A, Vickery K, Cossart Y. Is biofilm accumulation on endoscope tubing a contributor to the failure of cleaning and decontamination? J Hosp Infect. 2004;58:224–229.

    Article  CAS  PubMed  Google Scholar 

  19. Ophir T, Gutnick DL. A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol. 1994;60:740–745.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vickery K, Pajkos A, Cossart Y. Removal of biofilm from endoscopes: evaluation of detergent efficiency. Am J Infect Control. 2004;32:170–176.

    Article  PubMed  Google Scholar 

  22. Marion-Ferey K, Pasmore M, Stoodley P, Wilson S, Husson GP, Costerton JW. Biofilm removal from silicone tubing: an assessment of the efficacy of dialysis machine decontamination procedures using an in vitro model. J Hosp Infect. 2003;53:64–71.

    Article  CAS  PubMed  Google Scholar 

  23. Moses FM, Lee JS. Current GI endoscope disinfection and QA practices. Dig Dis Sci. 2004;49:1791–1797. https://doi.org/10.1007/s10620-004-9572-5

    Article  PubMed  Google Scholar 

  24. Schaefer MK, Jhung M, Dahl M, et al. Infection control assessment of ambulatory surgical centers. JAMA. 2010;303:2273–2279.

    Article  CAS  PubMed  Google Scholar 

  25. Dirlam Langlay AM, Ofstead CL, Mueller NJ, Tosh PK, Baron TH, Wetzler HP. Reported gastrointestinal endoscope reprocessing lapses: the tip of the iceberg. Am J Infect Control. 2013;41:1188–1194.

    Article  PubMed  Google Scholar 

  26. Desilets D, Kaul V, Tierney WM, et al. Automated endoscope reprocessors. Gastrointest Endosc. 2010;72:675–680.

    Article  PubMed  Google Scholar 

  27. Alfa MJ, DeGagne P, Olson N, Fatima I. EVOTECH endoscope cleaner and reprocessor (ECR) simulated-use and clinical-use evaluation of cleaning efficacy. BMC Infect Dis. 2010;10:200.

    Article  PubMed  PubMed Central  Google Scholar 

  28. McDonnell G, Ehrman M, Kiess S. Effectiveness of the SYSTEM 1E Liquid Chemical Sterilant Processing System for reprocessing duodenoscopes. Am J Infect Control. 2016;44:685–688.

    Article  PubMed  Google Scholar 

  29. Allen JI, Allen MO, Olson MM, et al. Pseudomonas infection of the biliary system resulting from use of a contaminated endoscope. Gastroenterology. 1987;92:759–763.

    Article  CAS  PubMed  Google Scholar 

  30. Alvarado CJ, Stolz SM, Maki DG. Nosocomial infections from contaminated endoscopes: a flawed automated endoscope washer. An investigation using molecular epidemiology. Am J Med. 1991;91:272S-80S.

    Article  Google Scholar 

  31. Fraser VJ, Jones M, Murray PR, Medoff G, Zhang Y, Wallace RJ. Contamination of flexible fiberoptic bronchoscopes with Mycobacterium chelonae linked to an automated bronchoscope disinfection machine. Am Rev Respir Dis. 1992;145:853–855.

    Article  CAS  PubMed  Google Scholar 

  32. Kressel AB, Kidd F. Pseudo-outbreak of Mycobacterium chelonae and Methylobacterium mesophilicum caused by contamination of an automated endoscopy washer. Infect Control Hosp Epidemiol. 2001;22:414–418.

    Article  CAS  PubMed  Google Scholar 

  33. Schelenz S, French G. An outbreak of multidrug-resistant Pseudomonas aeruginosa infection associated with contamination of bronchoscopes and an endoscope washer-disinfector. J Hosp Infect. 2000;46:23–30.

    Article  CAS  PubMed  Google Scholar 

  34. Information about Automated Endoscope Reprocessors (AERs) and FDA’s Evaluation. Food and Drug Administration.

  35. Srinivasan A. Epidemiology and prevention of infections related to endoscopy. Curr Infect Dis Rep. 2003;5:467–472.

    Article  PubMed  Google Scholar 

  36. Leung JW, Ling TK, Chan RC, et al. Antibiotics, biliary sepsis, and bile duct stones. Gastrointest Endosc. 1994;40:716–721.

    Article  CAS  PubMed  Google Scholar 

  37. Rerknimitr R, Fogel EL, Kalayci C, Esber E, Lehman GA, Sherman S. Microbiology of bile in patients with cholangitis or cholestasis with and without plastic biliary endoprosthesis. Gastrointest Endosc. 2002;56:885–889.

    Article  PubMed  Google Scholar 

  38. Nelson DB, Muscarella LF. Current issues in endoscope reprocessing and infection control during gastrointestinal endoscopy. World J Gastroenterol. 2006;12:3953–3964.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rutala WA, Weber DJ. Outbreaks of carbapenem-resistant Enterobacteriaceae infections associated with duodenoscopes: what can we do to prevent infections? Am J Infect Control. 2016;44:e47–e51.

    Article  PubMed  Google Scholar 

  40. Supplemental measures to enhance duodenoscope reprocessing: FDA safety communication. Food and drug administration; 2015.

  41. Reprocessing medical devices in health care settings: validation methods and labeling guidance for industry and Food and Drug Administration staff. Food and drug administration; 2015.

  42. Interim Protocol for Healthcare Facilities Regarding Surveillance for Bacterial Contamination of Duodenoscopes after Reprocessing. Centers for Disease Control and Prevention.

  43. Urayama S, Kozarek RA, Sumida S, Raltz S, Merriam L, Pethigal P. Mycobacteria and glutaraldehyde: is high-level disinfection of endoscopes possible? Gastrointest Endosc. 1996;43:451–456.

    Article  CAS  PubMed  Google Scholar 

  44. Bradley CR, Babb JR. Endoscope decontamination: automated vs. manual. J Hosp Infect. 1995;30:537–542.

    Article  PubMed  Google Scholar 

  45. Muscarella LF. Automatic flexible endoscope reprocessors. Gastrointest Endosc Clin N Am. 2000;10:245–257.

    Article  CAS  PubMed  Google Scholar 

  46. Alfa MJ, Singh H, Duerksen DR, et al. Improper positioning of the elevator lever of duodenoscopes may lead to sequestered bacteria that survive disinfection by automated endoscope reprocessors. Am J Infect Control. 2018;46:73–75.

    Article  PubMed  Google Scholar 

  47. Alfa MJ, Sitter DL. In-hospital evaluation of contamination of duodenoscopes: a quantitative assessment of the effect of drying. J Hosp Infect. 1991;19:89–98.

    Article  CAS  PubMed  Google Scholar 

  48. Muscarella LF. Inconsistencies in endoscope-reprocessing and infection-control guidelines: the importance of endoscope drying. Am J Gastroenterol. 2006;101:2147–2154.

    Article  PubMed  Google Scholar 

  49. Pineau L, Villard E, Duc DL, Marchetti B. Endoscope drying/storage cabinet: interest and efficacy. J Hosp Infect. 2008;68:59–65.

    Article  CAS  PubMed  Google Scholar 

  50. Grandval P, Hautefeuille G, Marchetti B, Pineau L, Laugier R. Evaluation of a storage cabinet for heat-sensitive endoscopes in a clinical setting. J Hosp Infect. 2013;84:71–76.

    Article  CAS  PubMed  Google Scholar 

  51. Osborne S, Reynolds S, George N, Lindemayer F, Gill A, Chalmers M. Challenging endoscopy reprocessing guidelines: a prospective study investigating the safe shelf life of flexible endoscopes in a tertiary gastroenterology unit. Endoscopy. 2007;39:825–830.

    Article  CAS  PubMed  Google Scholar 

  52. Rejchrt S, Cermák P, Pavlatová L, McKová E, Bures J. Bacteriologic testing of endoscopes after high-level disinfection. Gastrointest Endosc. 2004;60:76–78.

    Article  PubMed  Google Scholar 

  53. Vergis AS, Thomson D, Pieroni P, Dhalla S. Reprocessing flexible gastrointestinal endoscopes after a period of disuse: is it necessary? Endoscopy. 2007;39:737–739.

    Article  CAS  PubMed  Google Scholar 

  54. Ingram J, Gaines P, Kite R, Morgan M, Spurling S, Winsett RP. Evaluation of medically significant bacteria in colonoscopes after 8 weeks of shelf life in open air storage. Gastroenterol Nurs. 2013;36:106–111.

    Article  PubMed  Google Scholar 

  55. Brock AS, Steed LL, Freeman J, Garry B, Malpas P, Cotton P. Endoscope storage time: assessment of microbial colonization up to 21 days after reprocessing. Gastrointest Endosc. 2015;81:1150–1154.

    Article  PubMed  Google Scholar 

  56. Schmelzer M, Daniels G, Hough H. Safe storage time for reprocessed flexible endoscopes: a systematic review. JBI Database Syst Rev Implement Rep. 2015;13:187–243.

    Google Scholar 

  57. Brief summary of the gastroenterology and urology devices panel meeting, May, 2015. Food and Drug Administration.

  58. Deva AK, Vickery K, Zou J, et al. Detection of persistent vegetative bacteria and amplified viral nucleic acid from in-use testing of gastrointestinal endoscopes. J Hosp Infect. 1998;39:149–157.

    Article  CAS  PubMed  Google Scholar 

  59. Moses FM, Lee J. Surveillance cultures to monitor quality of gastrointestinal endoscope reprocessing. Am J Gastroenterol. 2003;98:77–81.

    Article  PubMed  Google Scholar 

  60. Tunuguntla A, Sullivan MJ. Monitoring quality of flexible endoscope disinfection by microbiologic surveillance cultures. Tenn Med. 2004;97:453–456.

    PubMed  Google Scholar 

  61. Beilenhoff U, Neumann CS, Rey JF, et al. ESGE-ESGENA guideline for quality assurance in reprocessing: microbiological surveillance testing in endoscopy. Endoscopy. 2007;39:175–181.

    Article  CAS  PubMed  Google Scholar 

  62. Beilenhoff U, Neumann CS, Rey JF, et al. ESGE-ESGENA Guideline: cleaning and disinfection in gastrointestinal endoscopy. Endoscopy. 2008;40:939–957.

    Article  CAS  PubMed  Google Scholar 

  63. Taylor A, Jones D, Everts R. Infection Control in Gastrointestinal Endoscopy. 3rd ed. Victoria, Australia: Gastroenterological Society of Australia, Australia Gastrointestinal Endoscopy Association, and Gastroenterological Nurses College of Australia; 2010.

    Google Scholar 

  64. Interim Protocol for Healthcare Facilities Regarding Surveillance for Bacterial Contamination of Duodenoscopes after Reprocessing. Centers for Disease Control and Prevention; March 2015.

  65. Duodenoscope Surveillance Sampling & Culturing: Reducing the risks of Infection. Food and Drug Administration; February, 2018.

  66. Fraser TG, Reiner S, Malczynski M, Yarnold PR, Warren J, Noskin GA. Multidrug-resistant Pseudomonas aeruginosa cholangitis after endoscopic retrograde cholangiopancreatography: failure of routine endoscope cultures to prevent an outbreak. Infect Control Hosp Epidemiol. 2004;25:856–859.

    Article  PubMed  Google Scholar 

  67. Alfa MJ, Fatima I, Olson N. Validation of adenosine triphosphate to audit manual cleaning of flexible endoscope channels. Am J Infect Control. 2013;41:245–248.

    Article  PubMed  Google Scholar 

  68. Alfa MJ, Olson N, Murray BL. Comparison of clinically relevant benchmarks and channel sampling methods used to assess manual cleaning compliance for flexible gastrointestinal endoscopes. Am J Infect Control. 2014;42:e1–e5.

    Article  PubMed  Google Scholar 

  69. Obee PC, Griffith CJ, Cooper RA, Cooke RP, Bennion NE, Lewis M. Real-time monitoring in managing the decontamination of flexible gastrointestinal endoscopes. Am J Infect Control. 2005;33:202–206.

    Article  PubMed  Google Scholar 

  70. Komanduri S, Abu Dayyeh BK, Bhat YM, et al. Technologies for monitoring the quality of endoscope reprocessing. Gastrointest Endosc. 2014;80:369–373.

    Article  PubMed  Google Scholar 

  71. Rutala WA, Weber DJ. ERCP scopes: what can we do to prevent infections? Infect Control Hosp Epidemiol. 2015;36:643–648.

    Article  PubMed  Google Scholar 

  72. Rubin ZA, Murthy RK. Outbreaks associated with duodenoscopes: new challenges and controversies. Curr Opin Infect Dis. 2016;29:407–414.

    Article  PubMed  Google Scholar 

  73. Chapman CG, Siddiqui UD, Manzano M, et al. Risk of infection transmission in curvilinear array echoendoscopes: results of a prospective reprocessing and culture registry. Gastrointest Endosc. 2017;85:390-7.e1.

    Article  Google Scholar 

  74. Rex DK, Sieber M, Lehman GA, et al. A double-reprocessing high-level disinfection protocol does not eliminate positive cultures from the elevators of duodenoscopes. Endoscopy. 2018;50:588–596.

    Article  PubMed  Google Scholar 

  75. Snyder GM, Wright SB, Smithey A, et al. Randomized comparison of 3 high-level disinfection and sterilization procedures for duodenoscopes. Gastroenterology. 2017;153:1018–1025.

    Article  PubMed  Google Scholar 

  76. Bartles RL, Leggett JE, Hove S, et al. A randomized trial of single versus double high-level disinfection of duodenoscopes and linear echoendoscopes using standard automated reprocessing. Gastrointest Endosc. 2018;88:306-13.e2.

    Article  Google Scholar 

  77. Schneider PM. New technologies and trends in sterilization and disinfection. Am J Infect Control. 2013;41:S81–S86.

    Article  PubMed  Google Scholar 

  78. Bălan GG, Roşca I, Ursu EL, et al. Plasma-activated water: a new and effective alternative for duodenoscope reprocessing. Infect Drug Resist. 2018;11:727–733.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Voelker R. Duodenoscope design aimed at infection prevention. JAMA. 2017;318:1644.

    PubMed  Google Scholar 

  80. Colt HG, Beamis JJ, Harrell JH, Mathur PM. Novel flexible bronchoscope and single-use disposable-sheath endoscope system. A preliminary technology evaluation. Chest. 2000;118:183–187.

    Article  CAS  PubMed  Google Scholar 

  81. Hirota WK, Petersen K, Baron TH, et al. Guidelines for antibiotic prophylaxis for GI endoscopy. Gastrointest Endosc. 2003;58:475–482.

    Article  PubMed  Google Scholar 

  82. Banerjee S, Shen B, Baron TH, et al. Antibiotic prophylaxis for GI endoscopy. Gastrointest Endosc. 2008;67:791–798.

    Article  PubMed  Google Scholar 

  83. Bai Y, Gao F, Gao J, Zou DW, Li ZS. Prophylactic antibiotics cannot prevent endoscopic retrograde cholangiopancreatography-induced cholangitis: a meta-analysis. Pancreas. 2009;38:126–130.

    Article  CAS  PubMed  Google Scholar 

  84. Harris A, Chan AC, Torres-Viera C, Hammett R, Carr-Locke D. Meta-analysis of antibiotic prophylaxis in endoscopic retrograde cholangiopancreatography (ERCP). Endoscopy. 1999;31:718–724.

    Article  CAS  PubMed  Google Scholar 

  85. Cotton PB, Connor P, Rawls E, Romagnuolo J. Infection after ERCP, and antibiotic prophylaxis: a sequential quality-improvement approach over 11 years. Gastrointest Endosc. 2008;67:471–475.

    Article  PubMed  Google Scholar 

  86. Motte S, Deviere J, Dumonceau JM, Serruys E, Thys JP, Cremer M. Risk factors for septicemia following endoscopic biliary stenting. Gastroenterology. 1991;101:1374–1381.

    Article  CAS  PubMed  Google Scholar 

  87. Allison MC, Sandoe JA, Tighe R, et al. Antibiotic prophylaxis in gastrointestinal endoscopy. Gut. 2009;58:869–880.

    Article  CAS  PubMed  Google Scholar 

  88. Ofstead CL, Dirlam Langlay AM, Mueller NJ, Tosh PK, Wetzler HP. Re-evaluating endoscopy-associated infection risk estimates and their implications. Am J Infect Control. 2013;41:734–736.

    Article  PubMed  Google Scholar 

  89. Imbert G, Seccia Y, La Scola B. Methylobacterium sp. bacteraemia due to a contaminated endoscope. J Hosp Infect. 2005;61:268–270.

    Article  CAS  PubMed  Google Scholar 

  90. Ranjan P, Das K, Ayyagiri A, Saraswat VA, Choudhuri G. A report of post-ERCP Pseudomonas aeruginosa infection outbreak. Indian J Gastroenterol. 2005;24:131–132.

    PubMed  Google Scholar 

  91. Alrabaa SF, Nguyen P, Sanderson R, et al. Early identification and control of carbapenemase-producing Klebsiella pneumoniae, originating from contaminated endoscopic equipment. Am J Infect Control. 2013;41:562–564.

    Article  PubMed  Google Scholar 

  92. Aumeran C, Poincloux L, Souweine B, et al. Multidrug-resistant Klebsiella pneumoniae outbreak after endoscopic retrograde cholangiopancreatography. Endoscopy. 2010;42:895–899.

    Article  CAS  PubMed  Google Scholar 

  93. Carbonne A, Thiolet JM, Fournier S, et al. Control of a multi-hospital outbreak of KPC-producing Klebsiella pneumoniae type 2 in France, September to October 2009. Euro Surveill. 2010;15:19734.

    Article  PubMed  Google Scholar 

  94. Dortet L, Naas T, Boytchev I, Fortineau N. Endoscopy-associated transmission of carbapenemase-producing Enterobacteriaceae: return of 5 years’ experience. Endoscopy. 2015;47:561.

    Article  PubMed  Google Scholar 

  95. Naas T, Cuzon G, Babics A, et al. Endoscopy-associated transmission of carbapenem-resistant Klebsiella pneumoniae producing KPC-2 beta-lactamase. J Antimicrob Chemother. 2010;65:1305–1306.

    Article  CAS  PubMed  Google Scholar 

  96. McCool S, Clarke L, Querry A. Carbapenem-resistant Enterobacteriaceae (CRE) Klebsiella pneumonia (KP) cluster analysis associated with GI scopes with elevator channel. ID Week2013.

  97. Verfaillie CJ, Bruno MJ, Voor in 't Holt AF, et al. Withdrawal of a novel-design duodenoscope ends outbreak of a VIM-2-producing Pseudomonas aeruginosa. Endoscopy. 2015;47:493–502.

    Article  PubMed  Google Scholar 

  98. Kola A, Piening B, Pape UF, et al. An outbreak of carbapenem-resistant OXA-48 - producing Klebsiella pneumonia associated to duodenoscopy. Antimicrob Resist Infect Control. 2015;4:8.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wendorf KA, Kay M, Baliga C, et al. Endoscopic retrograde cholangiopancreatography-associated AmpC Escherichia coli outbreak. Infect Control Hosp Epidemiol. 2015;36:634–642.

    Article  PubMed  Google Scholar 

  100. Epstein L, Hunter JC, Arwady MA, et al. New Delhi metallo-β-lactamase-producing carbapenem-resistant Escherichia coli associated with exposure to duodenoscopes. JAMA. 2014;312:1447–1455.

    Article  CAS  PubMed  Google Scholar 

  101. Smith ZL, Oh YS, Saeian K, et al. Transmission of carbapenem-resistant Enterobacteriaceae during ERCP: time to revisit the current reprocessing guidelines. Gastrointest Endosc. 2015;81:1041–1045.

    Article  PubMed  Google Scholar 

  102. Ross J. Electronic and microbiological detection, investigation, and surveillance for potential hospital-acquired device associated infections at ERCP. Open Forum Infect Dis. 2017;4:S174.

    Article  PubMed Central  Google Scholar 

  103. Coffey Kc, Shenoy ES, Platt MY, et al. Endoscopic retrograde cholangiopancreatography associated with ceftriaxone-resistant Escherichia coli bloodstream infections: looking for hay in a haystack. Open Forum Infect Dis. 2017;4:S173–S174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Goyal.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.R., Perisetti, A., Coman, R. et al. Duodenoscope-Associated Infections: Update on an Emerging Problem. Dig Dis Sci 64, 1409–1418 (2019). https://doi.org/10.1007/s10620-018-5431-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-5431-7

Keywords

Navigation