Skip to main content
Log in

Dual Alpha2C/5HT1A Receptor Agonist Allyphenyline Induces Gastroprotection and Inhibits Fundic and Colonic Contractility

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Allyphenyline, a novel α2-adrenoceptor (AR) ligand, has been shown to selectively activate α2C-adrenoceptors (AR) and 5HT1A receptors, but also to behave as a neutral antagonist of α2A-ARs. We exploited this unique pharmacological profile to analyze the role of α2C-ARs and 5HT1A receptors in the regulation of gastric mucosal integrity and gastrointestinal motility.

Methods

Gastric injury was induced by acidified ethanol in Wistar rats. Mucosal catalase and superoxide dismutase levels were measured by assay kits. The effect of allyphenyline on electrical field stimulation (EFS)-induced fundic and colonic contractions was determined in C57BL/6 mice.

Results

Intracerebroventricularly injected allyphenyline (3 and 15 nmol/rat) dose dependently inhibited the development of mucosal damage, which was antagonized by ARC 239 (α2B/C-AR and 5HT1A receptor antagonist), (S)-WAY 100135 (selective 5HT1A receptor antagonist), and JP-1302 (selective α2C-AR antagonist). This protection was accompanied by significant elevation of mucosal catalase and superoxide dismutase levels. Allyphenyline (10−9–10−5 M) also inhibited EFS-induced fundic contractions, which was antagonized by ARC 239 and (S)-WAY 100135, but not by JP-1302. Similar inhibition was observed in the colon; however, in this case only ARC 239 reduced this effect, while neither selective inhibition of α2C-ARs and 5HT1A receptors nor genetic deletion of α2A- and α2B-ARs influenced it.

Conclusions

Activation of both central α2C-ARs and 5HT1A receptors contributes to the gastroprotective action of allyphenyline in rats. Its inhibitory effect on fundic contractions is mediated by 5HT1A receptors, but neither α2-ARs nor 5HT1A receptors take part in its inhibitory effect on colonic contractility in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bylund DB, Eikenberg DC, Hieble JP, et al. International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev. 1994;46:121–136.

    CAS  PubMed  Google Scholar 

  2. Hein L. Adrenoceptors and signal transduction in neurons. Cell Tissue Res. 2006;326:541–551.

    Article  CAS  PubMed  Google Scholar 

  3. Knaus AE, Muthig V, Schickinger S, et al. Alpha2-adrenoceptor subtypes-unexpected functions for receptors and ligands derived from gene-targeted mouse models. Neurochem Int. 2007;51:277–281.

    Article  CAS  PubMed  Google Scholar 

  4. Gyires K, Zádori ZS, Török T, Mátyus P. Alpha(2)-adrenoceptor subtypes-mediated physiological, pharmacological actions. Neurochem Int. 2009;55:447–453.

    Article  CAS  PubMed  Google Scholar 

  5. Paton WD, Vizi ES. The inhibitory action of noradrenaline and adrenaline on acetylcholine output by guinea-pig ileum longitudinal muscle strip. Br J Pharmacol. 1969;35:10–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Ponti F, Giaroni C, Cosentino M, Lecchini S, Frigo G. Adrenergic mechanisms in the control of gastrointestinal motility: from basic science to clinical applications. Pharmacol Ther. 1996;69:59–78.

    Article  PubMed  Google Scholar 

  7. Blandizzi C. Enteric alpha-2 adrenoceptors: pathophysiological implications in functional and inflammatory bowel disorders. Neurochem Int. 2007;51:282–288.

    Article  CAS  PubMed  Google Scholar 

  8. Nagata M, Osumi Y. Central alpha 2-adrenoceptor-mediated inhibition of gastric motility in rats. Jpn J Pharmacol. 1993;62:329–330.

    Article  CAS  PubMed  Google Scholar 

  9. Müllner K, Rónai AZ, Fülöp K, Fürst S, Gyires K. Involvement of central K(ATP) channels in the gastric antisecretory action of alpha2-adrenoceptor agonists and beta-endorphin in rats. Eur J Pharmacol. 2002;435:225–229.

    Article  PubMed  Google Scholar 

  10. Umezawa T, Guo S, Jiao Y, Hisamitsu T. Effect of clonidine on colonic motility in rats. Auton Neurosci. 2003;107:32–36.

    Article  CAS  PubMed  Google Scholar 

  11. Tack J, Caenepeel P, Corsetti M, Janssens J. Role of tension receptors in dyspeptic patients with hypersensitivity to gastric distention. Gastroenterology. 2004;127:1058–1066.

    Article  PubMed  Google Scholar 

  12. Fülöp K, Zádori Z, Rónai AZ, Gyires K. Characterisation of alpha2-adrenoceptor subtypes involved in gastric emptying, gastric motility and gastric mucosal defence. Eur J Pharmacol. 2005;528:150–157.

    Article  PubMed  Google Scholar 

  13. Gyires K, Müllner K, Fürst S, Rónai AZ. Alpha-2 adrenergic and opioid receptor-mediated gastroprotection. J Physiol Paris. 2000;94:117–121.

    Article  CAS  PubMed  Google Scholar 

  14. Gyires K, Müllner K, Rónai AZ. Functional evidence that gastroprotection can be induced by activation of central alpha(2B)-adrenoceptor subtypes in the rat. Eur J Pharmacol. 2000;396:131–135.

    Article  CAS  PubMed  Google Scholar 

  15. Gyires K, Rónai AZ, Müllner K, Fürst S. Intracerebroventricular injection of clonidine releases beta-endorphin to induce mucosal protection in the rat. Neuropharmacology. 2000;39:961–968.

    Article  CAS  PubMed  Google Scholar 

  16. Gyires K, Zádori ZS, Shujaa N, Minorics R, Falkay G, Mátyus P. Analysis of the role of central and peripheral alpha2-adrenoceptor subtypes in gastric mucosal defense in the rat. Neurochem Int. 2007;51:289–296.

    Article  CAS  PubMed  Google Scholar 

  17. Zádori ZS, Shujaa N, Brancati SB, Hein L, Gyires K. Both alpha2B- and alpha2C-adrenoceptor subtypes are involved in the mediation of centrally induced gastroprotection in mice. Eur J Pharmacol. 2011;669:115–120.

    Article  PubMed  Google Scholar 

  18. Docherty JR. Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur J Pharmacol. 1998;361:1–15.

    Article  CAS  PubMed  Google Scholar 

  19. Philipp M, Brede M, Hein L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol. 2002;283:287–295.

    Article  Google Scholar 

  20. Link RE, Desai K, Hein L, et al. Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and c. Science. 1996;273:803–805.

    Article  CAS  PubMed  Google Scholar 

  21. Makaritsis KP, Johns C, Gavras I, et al. Sympathoinhibitory function of the alpha(2A)-adrenergic receptor subtype. Hypertension. 1999;34:403–407.

    Article  CAS  PubMed  Google Scholar 

  22. Gentili F, Cardinaletti C, Vesprini C, et al. Alpha2-adrenoreceptors profile modulation. 4. From antagonist to agonist behavior. J Med Chem. 2008;51:4289–4299.

    Article  CAS  PubMed  Google Scholar 

  23. Cardinaletti C, Mattioli L, Ghelfi F, et al. Might adrenergic alpha2C-agonists/alpha2A-antagonists become novel therapeutic tools for pain treatment with morphine? J Med Chem. 2009;52:7319–7322.

    Article  CAS  PubMed  Google Scholar 

  24. Del Bello F, Mattioli L, Ghelfi F, et al. Fruitful adrenergic alpha(2C)-agonism/alpha(2A)-antagonism combination to prevent and contrast morphine tolerance and dependence. J Med Chem. 2010;53:7825–7835.

    Article  PubMed  Google Scholar 

  25. Del Bello F, Diamanti E, Giannella M, et al. Low doses of allyphenyline and cyclomethyline, effective against morphine dependence, elicit an antidepressant-like effect. ACS Med Chem Lett. 2012;3:535–539.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ubaldi M, Del Bello F, Domi E, Pigini M, Nasuti C. Investigation of allyphenyline efficacy in the treatment of alcohol withdrawal symptoms. Eur J Pharmacol. 2015;760:122–128.

    Article  CAS  PubMed  Google Scholar 

  27. Farre AJ, Colombo M, Alvarez I, Glavin GB. Some novel 5-hydroxytryptamine1A (5-HT1A) receptor agonists reduce gastric acid and pepsin secretion, reduce experimental gastric mucosal injury and enhance gastric mucus in rats. J Pharmacol Exp Ther. 1995;272:832–837.

    CAS  PubMed  Google Scholar 

  28. Abdel Salam O, Baiuomy A. Effect of buspirone on inflammation, pain and gastric injury in mice. Int J Pharmacol. 2007;6.

  29. Tack JF, Janssens J, Vantrappen G, Wood JD. Actions of 5-hydroxytryptamine on myenteric neurons in guinea pig gastric antrum. Am J Physiol. 1992;263:838–846.

    Google Scholar 

  30. Xue L, Camilleri M, Locke GR 3rd, et al. Serotonergic modulation of murine fundic tone. Am J Physiol Gastrointest Liver Physiol. 2006;291:1180–1186.

    Article  Google Scholar 

  31. Dickson EJ, Heredia DJ, Smith TK. Critical role of 5-HT1A, 5-HT3, and 5-HT7 receptor subtypes in the initiation, generation, and propagation of the murine colonic migrating motor complex. Am J Physiol Gastrointest Liver Physiol. 2010;299:144–157.

    Article  Google Scholar 

  32. Takeuchi K. Pathogenesis of NSAID-induced gastric damage: importance of cyclooxygenase inhibition and gastric hypermotility. World J Gastroenterol. 2012;18:2147–2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Voronina TA, Glozman OM, Orlova EK, et al. Synthesis and psychotropic activity of 2-phenoxypropionic oxamidines and their analogs. Khim Farm Z. 1984;18:1309–1313.

    CAS  Google Scholar 

  34. Shujaa N, Al-Khrasani M, Zádori ZS, et al. alpha(2)-adrenoceptor agonist-induced inhibition of gastric motor activity is mediated by alpha(2A)-adrenoceptor subtype in the mouse. Neurochem Int. 2011;58:708–713.

    Article  CAS  PubMed  Google Scholar 

  35. Altman JD, Trendelenburg AU, MacMillan L, et al. Abnormal regulation of the sympathetic nervous system in alpha2A-adrenergic receptor knockout mice. Mol Pharmacol. 1999;56:154–161.

    CAS  PubMed  Google Scholar 

  36. Philipp M, Brede ME, Hadamek K, Gessler M, Lohse MJ, Hein L. Placental alpha(2)-adrenoceptors control vascular development at the interface between mother and embryo. Nat Genet. 2002;31:311–315.

    Article  CAS  PubMed  Google Scholar 

  37. Meana JJ, Callado LF, Pazos A, Grijalba B, Garcia-Sevilla JA. The subtype-selective alpha 2-adrenoceptor antagonists BRL 44408 and ARC 239 also recognize 5-HT1A receptors in the rat brain. Eur J Pharmacol. 1996;312:385–388.

    Article  CAS  PubMed  Google Scholar 

  38. Fletcher A, Bill DJ, Bill SJ, et al. WAY100135: a novel, selective antagonist at presynaptic and postsynaptic 5-HT1A receptors. Eur J Pharmacol. 1993;237:283–291.

    Article  CAS  PubMed  Google Scholar 

  39. Sallinen J, Hoglund I, Engstrom M, et al. Pharmacological characterization and CNS effects of a novel highly selective alpha2C-adrenoceptor antagonist JP-1302. Br J Pharmacol. 2007;150:391–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laine L, Takeuchi K, Tarnawski A. Gastric mucosal defense and cytoprotection: bench to bedside. Gastroenterology. 2008;135:41–60.

    Article  CAS  PubMed  Google Scholar 

  41. Malfertheiner P, Chan FK, McColl KE. Peptic ulcer disease. Lancet. 2009;374:1449–1461.

    Article  CAS  PubMed  Google Scholar 

  42. Szabo S. “Gastric cytoprotection” is still relevant. J Gastroenterol Hepatol. 2014;29:124–132.

    Article  CAS  PubMed  Google Scholar 

  43. Bardou M, Quenot JP, Barkun A. Stress-related mucosal disease in the critically ill patient. Nat Rev Gastroenterol Hepatol. 2015;12:98–107.

    Article  PubMed  Google Scholar 

  44. Robert A, Nezamis JE, Lancaster C, Hanchar AJ. Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl, and thermal injury. Gastroenterology. 1979;77:433–443.

    CAS  PubMed  Google Scholar 

  45. Tache Y. Brainstem neuropeptides and vagal protection of the gastric mucosal against injury: role of prostaglandins, nitric oxide and calcitonin-gene related peptide in capsaicin afferents. Curr Med Chem. 2012;19:35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kemmerly T, Kaunitz JD. Gastroduodenal mucosal defense. Curr Opin Gastroenterol. 2013;29:642–649.

    Article  CAS  PubMed  Google Scholar 

  47. Gyires K, Németh J, Zádori ZS. Gastric mucosal protection and central nervous system. Curr Pharm Des. 2013;19:34–39.

    CAS  PubMed  Google Scholar 

  48. Gyires K, Zádori ZS. Brain neuropeptides in gastric mucosal protection. Curr Opin Pharmacol. 2014;19:24–30.

    Article  CAS  PubMed  Google Scholar 

  49. Takeuchi K. Gastric cytoprotection by prostaglandin E(2) and prostacyclin: relationship to EP1 and IP receptors. J Physiol Pharmacol. 2014;65:3–14.

    CAS  PubMed  Google Scholar 

  50. Crassous PA, Denis C, Paris H, Senard JM. Interest of alpha2-adrenergic agonists and antagonists in clinical practice: background, facts and perspectives. Curr Top Med Chem. 2007;7:187–194.

    Article  CAS  PubMed  Google Scholar 

  51. Sullivan RM, Henke PG, Ray A. The effects of buspirone, a selective anxiolytic, on stress ulcer formation in rats. Pharmacol Biochem Behav. 1988;31:317–319.

    Article  CAS  PubMed  Google Scholar 

  52. Glavin GB, Alvarez I, Colombo M, Farre AJ. Effects of a novel 5-HT1A receptor agonist, E4424, on gastric adherent mucus levels following restraint stress in rats. Dig Dis Sci. 1995;40:2317–2320.

    Article  CAS  PubMed  Google Scholar 

  53. Krysiak R, Obuchowicz E, Herman ZS. Conditioned fear-induced changes in neuropeptide Y-like immunoreactivity in rats: the effect of diazepam and buspirone. Neuropeptides. 2000;34:148–157.

    Article  CAS  PubMed  Google Scholar 

  54. Hoshino K, Sugizaki M. Ulcerogenic effect of the lesion of the median raphe nucleus in fasted rats. Braz J Med Biol Res. 1986;19:123–130.

    CAS  PubMed  Google Scholar 

  55. Yoshikawa T, Naito Y, Kishi A, et al. Role of active oxygen, lipid peroxidation, and antioxidants in the pathogenesis of gastric mucosal injury induced by indomethacin in rats. Gut. 1993;34:732–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim SJ, Park YS, Paik HD, Chang HI. Effect of anthocyanins on expression of matrix metalloproteinase-2 in naproxen-induced gastric ulcers. Br J Nutr. 2011;106:1792–1801.

    Article  CAS  PubMed  Google Scholar 

  57. Kwiecien S, Brzozowski T, Konturek PC, et al. The role of reactive oxygen species and capsaicin-sensitive sensory nerves in the pathomechanisms of gastric ulcers induced by stress. J Physiol Pharmacol. 2003;54:423–437.

    CAS  PubMed  Google Scholar 

  58. Sangiovanni E, Vrhovsek U, Rossoni G, et al. Ellagitannins from Rubus berries for the control of gastric inflammation: in vitro and in vivo studies. PLoS ONE. 2013;8:e71762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Davies GR, Simmonds NJ, Stevens TR, et al. Helicobacter pylori stimulates antral mucosal reactive oxygen metabolite production in vivo. Gut. 1994;35:179–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kwiecien S, Jasnos K, Magierowski M, et al. Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress - induced gastric injury. J Physiol Pharmacol. 2014;65:613–622.

    CAS  PubMed  Google Scholar 

  61. El-Maraghy SA, Rizk SM, Shahin NN. Gastroprotective effect of crocin in ethanol-induced gastric injury in rats. Chem Biol Interact. 2015;229:26–35.

    Article  CAS  PubMed  Google Scholar 

  62. Xue L, Locke GR, Camilleri M, et al. Effect of modulation of serotonergic, cholinergic, and nitrergic pathways on murine fundic size and compliance measured by ultrasonomicrometry. Am J Physiol Gastrointest Liver Physiol. 2006;290:74–82.

    Article  Google Scholar 

  63. Janssen P, Prins NH, Moreaux B, Meulemans AL, Lefebvre RA. In vivo characterization of 5-HT1A receptor-mediated gastric relaxation in conscious dogs. Br J Pharmacol. 2003;140:913–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tack J, Piessevaux H, Coulie B, Fischler B, De Gucht V, Jannsens J. A placebo-controlled trial of buspirone, a fundus-relaxing drug, in functional dyspepsia: effect on symptoms and gastric sensory and motor function. Gastroenterology. 1999;166:325.

    Google Scholar 

  65. Boeckxstaens GE, Tytgat GN, Wajs E, et al. The influence of the novel 5-HT1A agonist R137696 on the proximal stomach function in healthy volunteers. Neurogastroenterol Motil. 2006;18:919–926.

    Article  CAS  PubMed  Google Scholar 

  66. Tack J. Prokinetics and fundic relaxants in upper functional GI disorders. Curr Opin Pharmacol. 2008;8:690–696.

    Article  CAS  PubMed  Google Scholar 

  67. Tack J, Demedts I, Meulemans A, Schuurkes J, Janssens J. Role of nitric oxide in the gastric accommodation reflex and in meal induced satiety in humans. Gut. 2002;51:219–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Van Oudenhove L, Kindt S, Vos R, Coulie B, Tack J. Influence of buspirone on gastric sensorimotor function in man. Aliment Pharmacol Ther. 2008;28:1326–1333.

    Article  PubMed  Google Scholar 

  69. Tack J, Janssen P, Masaoka T, Farre R, Van Oudenhove L. Efficacy of buspirone, a fundus-relaxing drug, in patients with functional dyspepsia. Clin Gastroenterol Hepatol. 2012;10:1239–1245.

    Article  CAS  PubMed  Google Scholar 

  70. Miwa H, Nagahara A, Tominaga K, et al. Efficacy of the 5-HT1A agonist tandospirone citrate in improving symptoms of patients with functional dyspepsia: a randomized controlled trial. Am J Gastroenterol. 2009;104:2779–2787.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang L, Keef KD, Bradley ME, Buxton IL. Action of alpha 2A-adrenergic receptors in circular smooth muscle of canine proximal colon. Am J Physiol. 1992;262:517–524.

    Google Scholar 

  72. Smith TK, Park KJ, Hennig GW. Colonic migrating motor complexes, high amplitude propagating contractions, neural reflexes and the importance of neuronal and mucosal serotonin. J Neurogastroenterol Motil. 2014;20:423–446.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Caballero-Plasencia AM, Sofos-Kontoyannis S, Valenzuela-Barranco M, Martin-Ruiz JL, Casado-Caballero FJ, Lopez-Manas JG. Irritable bowel syndrome in patients with dyspepsia: a community-based study in southern Europe. Eur J Gastroenterol Hepatol. 1999;11:517–522.

    Article  CAS  PubMed  Google Scholar 

  74. Kaji M, Fujiwara Y, Shiba M, et al. Prevalence of overlaps between GERD, FD and IBS and impact on health-related quality of life. J Gastroenterol Hepatol. 2010;25:1151–1156.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Our research was supported by the Hungarian Scientific Research Fund (OTKA PD 109602). The authors wish to thank Mrs. I. Szalai for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klára Gyires.

Ethics declarations

Conflict of interest

None.

Additional information

Zoltán S. Zádori and Ágnes Fehér have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zádori, Z.S., Fehér, Á., Tóth, V.E. et al. Dual Alpha2C/5HT1A Receptor Agonist Allyphenyline Induces Gastroprotection and Inhibits Fundic and Colonic Contractility. Dig Dis Sci 61, 1512–1523 (2016). https://doi.org/10.1007/s10620-015-4026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-4026-9

Keywords

Navigation