Skip to main content

Advertisement

Log in

Soluble Syndecan-1 Levels Are Elevated in Patients with Inflammatory Bowel Disease

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Syndecan-1 plays a central role in maintaining normal intestinal barrier function. Shedding of syndecan-1, reflected by soluble syndecan-1 serum concentrations, is highly regulated by inflammation.

Aim

To determine soluble syndecan-1 levels in inflammatory bowel disease patients and its relationship with other inflammatory markers, disease activity, and medical treatment.

Methods

Cross-sectional, pilot study in which serum concentrations of soluble syndecan-1 were analyzed by ELISA in a cohort of 41 inflammatory bowel disease patients (22 Crohn’s disease, 19 ulcerative colitis) and 16 healthy controls. Disease activity was estimated by the Crohn’s disease activity index, partial Mayo score, and C-reactive protein.

Results

Soluble syndecan-1 levels were significantly higher in inflammatory bowel disease patients compared to healthy controls (29.5 ± 13.4 vs. 21.1 ± 10.4 ng/ml, respectively, P = 0.03). Soluble syndecan-1 displayed a reliable ability to discriminate inflammatory bowel disease patients from healthy controls with a sensitivity of 95 %, specificity of 50 %, and positive predictive value of 83 %. Patients treated with anti-inflammatory medications demonstrated significantly lower soluble syndecan-1 levels compared to untreated patients (26.45 ± 9.75 vs. 38 ± 18.43 ng/ml, respectively, P = 0.008).

Conclusions

Our results suggest that soluble syndecan-1 is potentially a novel diagnostic marker in the management of inflammatory bowel disease patients. Its applicability as a surrogate, prognostic biomarker remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–429.

    Article  CAS  PubMed  Google Scholar 

  2. Principi M, Day R, Marangi S, et al. Differential immunohistochemical expression of syndecan-1 and tumor necrosis factor alpha in colonic mucosa of patients with Crohn’s disease. Immunopharmacol Immunotoxicol. 2006;28:185–195.

    CAS  PubMed  Google Scholar 

  3. Bartlett AH, Hayashida K, Park PW. Molecular and cellular mechanisms of syndecans in tissue injury and inflammation. Mol Cells. 2007;24:153–166.

    CAS  PubMed  Google Scholar 

  4. Carey DJ. Syndecans: multifunctional cell-surface co-receptors. Biochem J. 1997;327:1–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Day R, Forbes A. Heparin, cell adhesion, and pathogenesis of inflammatory bowel disease. Lancet. 1999;354:62–65.

    Article  CAS  PubMed  Google Scholar 

  6. Gotte M. Syndecans in inflammation. Faseb J. 2003;17:575–591.

    Article  CAS  PubMed  Google Scholar 

  7. Tursi A, Elisei W, Principi M, et al. Mucosal expression of basic fibroblastic growth factor, syndecan 1 and tumour necrosis factor-alpha in Crohn’s disease in deep remission under treatment with anti-TNFalpha antibodies. J Gastrointest Liver Dis. 2014;23:261–265.

    Google Scholar 

  8. Patterson AM, Delday MI, van Kuppevelt TH, et al. Expression of heparan sulfate proteoglycans in murine models of experimental colitis. Inflamm Bowel Dis. 2012;18:1112–1126.

    Article  CAS  PubMed  Google Scholar 

  9. Ierardi E, Giorgio F, Zotti M, et al. Infliximab therapy downregulation of basic fibroblast growth factor/syndecan 1 link: a possible molecular pathway of mucosal healing in ulcerative colitis. J Clin Pathol. 2011;64:968–972.

    Article  CAS  PubMed  Google Scholar 

  10. Klagsbrun M, Baird A. A dual receptor system is required for basic fibroblast growth factor activity. Cell. 1991;67:229–231.

    Article  CAS  PubMed  Google Scholar 

  11. Yoshida S, Ono M, Shono T, et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol. 1997;17:4015–4023.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Day R, Ilyas M, Daszak P, Talbot I, Forbes A. Expression of syndecan-1 in inflammatory bowel disease and a possible mechanism of heparin therapy. Dig Dis Sci. 1999;44:2508–2515.

    Article  CAS  PubMed  Google Scholar 

  13. Day RM, Mitchell TJ, Knight SC, Forbes A. Regulation of epithelial syndecan-1 expression by inflammatory cytokines. Cytokine. 2003;21:224–233.

    Article  CAS  PubMed  Google Scholar 

  14. Brule S, Charnaux N, Sutton A, et al. The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9. Glycobiology. 2006;16:488–501.

    Article  CAS  PubMed  Google Scholar 

  15. Gan X, Wong B, Wright SD, Cai TQ. Production of matrix metalloproteinase-9 in CaCO-2 cells in response to inflammatory stimuli. J Interferon Cytokine Res. 2001;21:93–98.

    Article  CAS  PubMed  Google Scholar 

  16. Bode L, Salvestrini C, Park PW, et al. Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J Clin Invest. 2008;118:229–238.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chen Y, Hayashida A, Bennett AE, Hollingshead SK, Park PW. Streptococcus pneumoniae sheds syndecan-1 ectodomains through ZmpC, a metalloproteinase virulence factor. J Biol Chem. 2007;282:159–167.

    Article  CAS  PubMed  Google Scholar 

  18. Manon-Jensen T, Itoh Y, Couchman JR. Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J. 2010;277:3876–3889.

    Article  CAS  PubMed  Google Scholar 

  19. Li Q, Park PW, Wilson CL, Parks WC. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell. 2002;111:635–646.

    Article  CAS  PubMed  Google Scholar 

  20. Yablecovitch D, Shabat-Simon M, Aharoni R, Eilam R, Brenner O, Arnon R. Beneficial effect of glatiramer acetate treatment on syndecan-1 expression in dextran sodium sulfate colitis. J Pharmacol Exp Ther. 2011;337:391–399.

    Article  CAS  PubMed  Google Scholar 

  21. Floer M, Gotte M, Wild MK, et al. Enoxaparin improves the course of dextran sodium sulfate-induced colitis in syndecan-1-deficient mice. Am J Pathol. 2010;176:146–157.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wang X, Chen Y, Song Y, Zhang S, Xie X, Wang X. Activated syndecan-1 shedding contributes to mice colitis induced by dextran sulfate sodium. Dig Dis Sci. 2011;56:1047–1056.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang S, Qing Q, Wang Q, et al. Syndecan-1 and heparanase: potential markers for activity evaluation and differential diagnosis of Crohn’s disease. Inflamm Bowel Dis. 2013;19:1025–1033.

    Article  PubMed  Google Scholar 

  24. Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol (Journal canadien de gastroenterologie). 2005;19:5A–36A.

    Google Scholar 

  25. Best WR, Becktel JM, Singleton JW, Kern F Jr. Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology. 1976;70:439–444.

    CAS  PubMed  Google Scholar 

  26. Lewis JD, Chuai S, Nessel L, Lichtenstein GR, Aberra FN, Ellenberg JH. Use of the noninvasive components of the Mayo score to assess clinical response in ulcerative colitis. Inflamm Bowel Dis. 2008;14:1660–1666.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Dixon WJ. BMDP statistical software. California: University of California Press; 1993.

    Google Scholar 

  28. Purushothaman A, Chen L, Yang Y, Sanderson RD. Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem. 2008;283:32628–32636.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–2078.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Vermeire S, Van Assche G, Rutgeerts P. Laboratory markers in IBD: useful, magic, or unnecessary toys? Gut. 2006;55:426–431.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Klein RD, Borchers AH, Sundareshan P, et al. Interleukin-1beta secreted from monocytic cells induces the expression of matrilysin in the prostatic cell line LNCaP. J Biol Chem. 1997;272:14188–14192.

    Article  CAS  PubMed  Google Scholar 

  32. Wang XF, Li AM, Li J, et al. Low molecular weight heparin relieves experimental colitis in mice by downregulating IL-1beta and inhibiting syndecan-1 shedding in the intestinal mucosa. PLoS One. 2013;8:e66397.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Aharoni R, Kayhan B, Brenner O, Domev H, Labunskay G, Arnon R. Immunomodulatory therapeutic effect of glatiramer acetate on several murine models of inflammatory bowel disease. J Pharmacol Exp Ther. 2006;318:68–78.

    Article  CAS  PubMed  Google Scholar 

  34. Gao Q, Meijer MJ, Schluter UG, et al. Infliximab treatment influences the serological expression of matrix metalloproteinase (MMP)-2 and -9 in Crohn’s disease. Inflamm Bowel Dis. 2007;13:693–702.

    Article  PubMed  Google Scholar 

  35. Ierardi E, Giorgio F, Piscitelli D, et al. Altered molecular pattern of mucosal healing in Crohn’s disease fibrotic stenosis. World J Gastrointest Pathophysiol. 2013;4:53–58.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Principi M, Giorgio F, Losurdo G, et al. Fibrogenesis and fibrosis in inflammatory bowel diseases: good and bad side of same coin? World J Gastrointest Pathophysiol. 2013;4:100–107.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bjorkesten CG, Nieminen U, Turunen U, Arkkila P, Sipponen T, Farkkila M. Surrogate markers and clinical indices, alone or combined, as indicators for endoscopic remission in anti-TNF-treated luminal Crohn’s disease. Scand J Gastroenterol. 2012;47:528–537.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ms. Pearl (Pnina) Lilos for her excellent assistance with the statistical analyses. FK was supported in part by The Josefina Maus and Gabriela Cesarman Chair for Research in Liver Diseases, Sackler Faculty of Medicine, Tel Aviv University. We gratefully acknowledge Dr. Talia Saker for reviewing the manuscript and providing helpful comments.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Yablecovitch.

Additional information

Doron Yablecovitch and Assaf Stein have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yablecovitch, D., Stein, A., Shabat-Simon, M. et al. Soluble Syndecan-1 Levels Are Elevated in Patients with Inflammatory Bowel Disease. Dig Dis Sci 60, 2419–2426 (2015). https://doi.org/10.1007/s10620-015-3589-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3589-9

Keywords

Navigation