Skip to main content

Advertisement

Log in

Sodium Ferulate Reduces Portal Pressure Through Inhibition of RhoA/Rho-Kinase and Activation of Endothelial Nitric Oxide Synthase in Cirrhotic Rats

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Recent studies have demonstrated that increased RhoA/Rho-kinase activity and reduced nitric oxide activity have the necessary machinery to induce cirrhosis. However, it is unclear whether this regulates the functions of hepatic stellate cells (HSCs). In this study, we used sodium ferulate (SF) in a cirrhotic rat model and examined its roles in regulating RhoA activation in HSCs and the subsequent effects on contraction of HSCs.

Methods

Bile duct ligation method was used to induce cirrhosis in rats. Intrahepatic resistance was investigated in in situ perfused livers. Hepatic RhoA, Rho-kinase and eNOS expressions were studied by RT-PCR and Western blot. RhoA pull-down assay and collagen gel contraction assay of HSCs were performed by incubation with SF in the absence or presence of GGPP.

Results

We showed that in cirrhotic liver, SF can efficiently affect RhoA activation via lowering the synthesis of GGPP in HSCs. These actions effectively reduced basal intrahepatic resistance in cirrhotic rats. Our study further suggested that SF effectively decreased Rho-kinase activity and increased activity of eNOS at both the mRNA and protein levels. SF treatment of HSCs reduced RhoA GTP without affecting the total RhoA protein level, and GGPP had the ability to block SF-induced protein expression. Furthermore, SF inhibited the contraction of activated HSCs and this inhibition was efficiently reversed by addition of GGPP.

Conclusions

SF inhibits hepatic RhoA/Rho-kinase signaling and activates the NO/PKG pathway in cirrhotic rats. This may serve as a mechanism for reducing the contraction of activated HSCs upon SF treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bosch J, Garcia-Pagan JC. Complications of cirrhosis. I. Portal hypertension. J Hepatol. 2000;32:141–156.

    Article  CAS  PubMed  Google Scholar 

  2. Van de Casteele M, Sagesser H, Zimmermann H, Reichen J. Characterisation of portal hypertension models by microspheres in anaesthetised rats: a comparison of liver flow. Pharmacol Ther. 2001;90:35–43.

    Article  PubMed  Google Scholar 

  3. Groszmann RJ, Abraldes JG. Portal hypertension: from bedside to bench. J Clin Gastroenterol. 2005;39:S125–S130.

    Article  PubMed  Google Scholar 

  4. Zhou Q. Intrahepatic upregulation of RhoA and Rho-kinase signalling contributes to increased hepatic vascular resistance in rats with secondary biliary cirrhosis. Gut. 2006;55:1296–1305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Shah V. Cellular and molecular basis of portal hypertension. Clin Liver Dis. 2001;5:629–644.

    Article  CAS  PubMed  Google Scholar 

  6. Rockey D. The cellular pathogenesis of portal hypertension: stellate cell contractility, endothelin, and nitric oxide. Hepatology. 1997;25:2–5.

    Article  CAS  PubMed  Google Scholar 

  7. Son MJ, Rico CW, Nam SH, Kang MY. Influence of oryzanol and ferulic acid on the lipid metabolism and antioxidative status in high fat-fed mice. J Clin Biochem Nutr. 2010;46:150–156.

    Article  CAS  Google Scholar 

  8. Schmidmaier R, Baumann P, Simsek M, Dayyani F, Emmerich B, Meinhardt G. The HMG-CoA reductase inhibitor simvastatin overcomes cell adhesion-mediated drug resistance in multiple myeloma by geranylgeranylation of Rho protein and activation of Rho kinase. Blood. 2004;104:1825–1832.

    Article  CAS  PubMed  Google Scholar 

  9. Lee MH, Cho YS, Han YM. Simvastatin suppresses self-renewal of mouse embryonic stem cells by inhibiting RhoA geranylgeranylation. Stem Cells. 2007;25:1654–1663.

    Article  CAS  PubMed  Google Scholar 

  10. Charlton-Menys V, Durrington PN. Human cholesterol metabolism and therapeutic molecules. Exp Physiol. 2008;93:27–42.

    Article  CAS  PubMed  Google Scholar 

  11. Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem. 1998;273:24266–24271.

    Article  CAS  PubMed  Google Scholar 

  12. Rikitake Y, Liao JK. Rho GTPases, statins, and nitric oxide. Circ Res. 2005;97:1232–1235.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ming XF, Viswambharan H, Barandier C, et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol. 2002;22:8467–8477.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hofmann F, Ammendola A, Schlossmann J. Rising behind NO: cGMP-dependent protein kinases. J Cell Sci. 2000;113:1671–1676.

    CAS  PubMed  Google Scholar 

  15. Meng LQ, Tang JW, Wang Y, et al. Astragaloside IV synergizes with ferulic acid to inhibit renal tubulointerstitial fibrosis in rats with obstructive nephropathy. Br J Pharmacol. 2011;162:1805–1818.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Alam MA, Sernia C, Brown L. Ferulic acid improves cardiovascular and kidney structure and function in hypertensive rats. J Cardiovasc Pharmacol. 2013;61:240–249.

    Article  CAS  PubMed  Google Scholar 

  17. Vairetti M, Ferrigno A, Carlucci F, et al. Subnormothermic machine perfusion protects steatotic livers against preservation injury: a potential for donor pool increase? Liver Transpl. 2009;15:20–29.

    Article  PubMed  Google Scholar 

  18. Kukan M, Szatmary Z, Lutterova M, Kuba D, Vajdova K, Horecky J. Effects of sizofiran on endotoxin-enhanced cold ischemia-reperfusion injury of the rat liver. Physiol Res. 2004;53:431–437.

    CAS  PubMed  Google Scholar 

  19. Vairetti M, Richelmi P, Berte F, Currin RT, Lemasters JJ, Imberti R. Role of pH in protection by low sodium against hypoxic injury in isolated perfused rat livers. J Hepatol. 2006;44:894–901.

    Article  CAS  PubMed  Google Scholar 

  20. Reynaert H, Urbain D, Geerts A. Regulation of sinusoidal perfusion in portal hypertension. Anat Rec (Hoboken). 2008;291:693–698.

    Article  Google Scholar 

  21. Kim MY, Baik SK, Lee SS. Hemodynamic alterations in cirrhosis and portal hypertension. Korean J Hepatol. 2010;16:347–352.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Reynaert H, Vaeyens F, Qin H, et al. Somatostatin suppresses endothelin-1-induced rat hepatic stellate cell contraction via somatostatin receptor subtype 1. Gastroenterology. 2001;121:915–930.

    Article  CAS  PubMed  Google Scholar 

  23. Saiman Y, Agarwal R, Hickman DA, et al. CXCL12 induces hepatic stellate cell contraction through a calcium-independent pathway. Am J Physiol Gastrointest Liver Physiol. 2013;305:G375–G382.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhou Q, Hennenberg M, Trebicka J, et al. Intrahepatic upregulation of RhoA and Rho-kinase signalling contributes to increased hepatic vascular resistance in rats with secondary biliary cirrhosis. Gut. 2006;55:1296–1305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hennenberg M, Biecker E, Trebicka J, et al. Defective RhoA/Rho-kinase signaling contributes to vascular hypocontractility and vasodilation in cirrhotic rats. Gastroenterology. 2006;130:838–854.

    Article  CAS  PubMed  Google Scholar 

  26. Oelze M, Mollnau H, Hoffmann N, et al. Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction. Circ Res. 2000;87:999–1005.

    Article  CAS  PubMed  Google Scholar 

  27. Trebicka J, Hennenberg M, Laleman W, et al. Atorvastatin lowers portal pressure in cirrhotic rats by inhibition of RhoA/Rho-kinase and activation of endothelial nitric oxide synthase. Hepatology. 2007;46:242–253.

    Article  CAS  PubMed  Google Scholar 

  28. Ji H, Meng Y, Zhang X, et al. Aldosterone induction of hepatic stellate cell contraction through activation of RhoA/ROCK-2 signaling pathway. Regul Pept. 2011;169:13–20.

    Article  CAS  PubMed  Google Scholar 

  29. Somlyo AP, Somlyo AV. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol. 2000;522:177–185.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389:990–994.

    Article  CAS  PubMed  Google Scholar 

  31. Sakurada S, Okamoto H, Takuwa N, Sugimoto N, Takuwa Y. Rho activation in excitatory agonist-stimulated vascular smooth muscle. Am J Physiol Cell Physiol. 2001;281:C571–C578.

    CAS  PubMed  Google Scholar 

  32. Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J. 2000;348:241–255.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol. 2003;4:446–456.

    Article  CAS  PubMed  Google Scholar 

  34. Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003;83:1325–1358.

    Article  CAS  PubMed  Google Scholar 

  35. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420:629–635.

    Article  CAS  PubMed  Google Scholar 

  36. Kato M, Iwamoto H, Higashi N, et al. Role of Rho small GTP binding protein in the regulation of actin cytoskeleton in hepatic stellate cells. J Hepatol. 1999;31:91–99.

    Article  CAS  PubMed  Google Scholar 

  37. Kawada N, Seki S, Kuroki T, Kaneda K. ROCK inhibitor Y-27632 attenuates stellate cell contraction and portal pressure increase induced by endothelin-1. Biochem Biophys Res Commun. 1999;266:296–300.

    Article  CAS  PubMed  Google Scholar 

  38. Murata T, Arii S, Nakamura T, et al. Inhibitory effect of Y-27632, a ROCK inhibitor, on progression of rat liver fibrosis in association with inactivation of hepatic stellate cells. J Hepatol. 2001;35:474–481.

    Article  CAS  PubMed  Google Scholar 

  39. Tada S, Iwamoto H, Nakamuta M, et al. A selective ROCK inhibitor, Y27632, prevents dimethylnitrosamine-induced hepatic fibrosis in rats. J Hepatol. 2001;34:529–536.

    Article  CAS  PubMed  Google Scholar 

  40. Lee JS, Kang Decker N, Chatterjee S, Yao J, Friedman S, Shah V. Mechanisms of nitric oxide interplay with Rho GTPase family members in modulation of actin membrane dynamics in pericytes and fibroblasts. Am J Pathol. 2005;166:1861–1870.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Dudzinski DM, Michel T. Life history of eNOS: partners and pathways. Cardiovasc Res. 2007;75:247–260.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Srinivasan M, Sudheer AR, Menon VP. Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr. 2007;40:92–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (81270507 and 81070342).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dean Tian or Qi Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Peng, L., Yang, J. et al. Sodium Ferulate Reduces Portal Pressure Through Inhibition of RhoA/Rho-Kinase and Activation of Endothelial Nitric Oxide Synthase in Cirrhotic Rats. Dig Dis Sci 60, 2019–2029 (2015). https://doi.org/10.1007/s10620-015-3544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3544-9

Keywords

Navigation