Skip to main content

Advertisement

Log in

Cell Mediators of Autoimmune Hepatitis and Their Therapeutic Implications

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Autoimmune hepatitis is associated with interactive cell populations of the innate and adaptive immune systems, and these populations are amenable to therapeutic manipulation. The goals of this review are to describe the key cell populations implicated in autoimmune hepatitis and to identify investigational opportunities to develop cell-directed therapies for this disease. Studies cited in PubMed from 1972 to 2014 for autoimmune hepatitis, innate and adaptive immune systems, and therapeutic interventions were examined. Dendritic cells can promote immune tolerance to self-antigens, present neo-antigens that enhance the immune response, and expand the regulatory T cell population. Natural killer cells can secrete pro-inflammatory and anti-inflammatory cytokines and modulate the activity of dendritic cells and antigen-specific T lymphocytes. T helper 2 lymphocytes can inhibit the cytotoxic activities of T helper 1 lymphocytes and limit the expansion of T helper 17 lymphocytes. T helper 17 lymphocytes can promote inflammatory activity, and they can also up-regulate genes that protect against oxidative stress and hepatocyte apoptosis. Natural killer T cells can expand the regulatory T cell population; gamma delta lymphocytes can secrete interleukin-10, stimulate hepatic regeneration, and induce the apoptosis of hepatic stellate cells; and antigen-specific regulatory T cells can dampen immune cell proliferation and function. Pharmacological agents, neutralizing antibodies, and especially the adoptive transfer of antigen-specific regulatory T cells that have been freshly generated ex vivo are evolving as management strategies. The cells within the innate and adaptive immune systems are key contributors to the occurrence of autoimmune hepatitis, and they are attractive therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Manns MP, Czaja AJ, Gorham JD, et al. Diagnosis and management of autoimmune hepatitis. Hepatology. 2010;51:2193–2213.

    CAS  PubMed  Google Scholar 

  2. Czaja AJ. Targeting apoptosis in autoimmune hepatitis. Dig Dis Sci. 2014;59:2890–2904.

    CAS  PubMed  Google Scholar 

  3. Czaja AJ. Autoimmune hepatitis. Part A: pathogenesis. Expert Rev Gastroenterol Hepatol. 2007;1:113–128.

    CAS  PubMed  Google Scholar 

  4. Czaja AJ. Review article: chemokines as orchestrators of autoimmune hepatitis and potential therapeutic targets. Aliment Pharmacol Ther. 2014;40:261–279.

    CAS  PubMed  Google Scholar 

  5. Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147:577–594, e571.

  6. Mbongue J, Nicholas D, Firek A, Langridge W. The role of dendritic cells in tissue-specific autoimmunity. J Immunol Res. 2014;2014:857143.

    PubMed Central  PubMed  Google Scholar 

  7. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–1132.

    CAS  PubMed  Google Scholar 

  8. Dardalhon V, Korn T, Kuchroo VK, Anderson AC. Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun. 2008;31:252–256.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517.

    CAS  PubMed  Google Scholar 

  10. Coquerelle C, Moser M. DC subsets in positive and negative regulation of immunity. Immunol Rev. 2010;234:317–334.

    CAS  PubMed  Google Scholar 

  11. Shklovskaya E, Fazekas de St Groth B. Balancing tolerance and immunity: the role of dendritic cell and T cell subsets. Methods Mol Biol. 2007;380:25–46.

    CAS  PubMed  Google Scholar 

  12. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249:158–175.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Hubert FX, Kinkel SA, Davey GM, et al. Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood. 2011;118:2462–2472.

    CAS  PubMed  Google Scholar 

  14. McKenna K, Beignon AS, Bhardwaj N. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol. 2005;79:17–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Lombardi VC, Khaiboullina SF. Plasmacytoid dendritic cells of the gut: relevance to immunity and pathology. Clin Immunol. 2014;153:165–177.

    CAS  PubMed  Google Scholar 

  16. Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol. 2004;5:1219–1226.

    CAS  PubMed  Google Scholar 

  17. Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 2005;23:275–306.

    CAS  PubMed  Google Scholar 

  18. Ito T, Yang M, Wang YH, et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med. 2007;204:105–115.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in autoimmunity. Nat Rev Immunol. 2013;13:566–577.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Tamaki S, Homma S, Enomoto Y, et al. Autoimmune hepatic inflammation by vaccination of mice with dendritic cells loaded with well-differentiated hepatocellular carcinoma cells and administration of interleukin-12. Clin Immunol. 2005;117:280–293.

    CAS  PubMed  Google Scholar 

  21. Ikeda A, Aoki N, Kido M, et al. Progression of autoimmune hepatitis is mediated by IL-18-producing dendritic cells and hepatic CXCL9 expression in mice. Hepatology. 2014;60:224–236.

    CAS  PubMed  Google Scholar 

  22. Gao B, Radaeva S, Park O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol. 2009;86:513–528.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Shi FD, Ljunggren HG, La Cava A, Van Kaer L. Organ-specific features of natural killer cells. Nat Rev Immunol. 2011;11:658–671.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Hudspeth K, Pontarini E, Tentorio P, et al. The role of natural killer cells in autoimmune liver disease: a comprehensive review. J Autoimmun. 2013;46:55–65.

    CAS  PubMed  Google Scholar 

  25. Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Kaneda K, Kurioka N, Seki S, Wake K, Yamamoto S. Pit cell-hepatocyte contact in autoimmune hepatitis. Hepatology. 1984;4:955–958.

    CAS  PubMed  Google Scholar 

  27. Shimoda S, Harada K, Niiro H, et al. Interaction between Toll-like receptors and natural killer cells in the destruction of bile ducts in primary biliary cirrhosis. Hepatology. 2011;53:1270–1281.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Momot T, Koch S, Hunzelmann N, et al. Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis Rheum. 2004;50:1561–1565.

    CAS  PubMed  Google Scholar 

  29. Yen JH, Moore BE, Nakajima T, et al. Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis. J Exp Med. 2001;193:1159–1167.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. van der Slik AR, Alizadeh BZ, Koeleman BP, Roep BO, Giphart MJ. Modelling KIR-HLA genotype disparities in type 1 diabetes. Tissue Antigens. 2007;69:101–105.

    PubMed  Google Scholar 

  31. Moretta A, Sivori S, Vitale M, et al. Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells. J Exp Med. 1995;182:875–884.

    CAS  PubMed  Google Scholar 

  32. Uhrberg M, Valiante NM, Shum BP, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997;7:753–763.

    CAS  PubMed  Google Scholar 

  33. Boyton RJ, Altmann DM. Natural killer cells, killer immunoglobulin-like receptors and human leucocyte antigen class I in disease. Clin Exp Immunol. 2007;149:1–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Gonzalez S, Groh V, Spies T. Immunobiology of human NKG2D and its ligands. Curr Top Microbiol Immunol. 2006;298:121–138.

    CAS  PubMed  Google Scholar 

  35. Kahraman A, Fingas CD, Syn WK, Gerken G, Canbay A. Role of stress-induced NKG2D ligands in liver diseases. Liver international : official journal of the International Association for the Study of the liver.. 2012;32:370–382.

    CAS  Google Scholar 

  36. Holdenrieder S, Eichhorn P, Beuers U, et al. Soluble NKG2D ligands in hepatic autoimmune diseases and in benign diseases involved in marker metabolism. Anticancer Res. 2007;27:2041–2045.

    CAS  PubMed  Google Scholar 

  37. Chen Y, Wei H, Gao B, et al. Activation and function of hepatic NK cells in hepatitis B infection: an underinvestigated innate immune response. J Viral Hepat. 2005;12:38–45.

    CAS  PubMed  Google Scholar 

  38. Trivedi PJ, Adams DH. Mucosal immunity in liver autoimmunity: a comprehensive review. J Autoimmun. 2013;46:97–111.

    CAS  PubMed  Google Scholar 

  39. Czaja AJ. Genetic factors affecting the occurrence, clinical phenotype, and outcome of autoimmune hepatitis. Clin Gastroenterol Hepatol. 2008;6:379–388.

    CAS  PubMed  Google Scholar 

  40. Lobo-Yeo A, Senaldi G, Portmann B, et al. Class I and class II major histocompatibility complex antigen expression on hepatocytes: a study in children with liver disease. Hepatology. 1990;12:224–232.

    CAS  PubMed  Google Scholar 

  41. da Rocha Junior LF, Dantas AT, Duarte AL, et al. PPARgamma agonists in adaptive immunity: what do immune disorders and their models have to tell us? PPAR Res. 2013;2013:519724.

  42. Tran GT, Hodgkinson SJ, Carter NM, et al. IL-5 promotes induction of antigen-specific CD4+ CD25+ T regulatory cells that suppress autoimmunity. Blood. 2012;119:4441–4450.

    CAS  PubMed  Google Scholar 

  43. Del Prete G, De Carli M, Almerigogna F, et al. Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol. 1993;150:353–360.

    PubMed  Google Scholar 

  44. Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H)17 cells. Nature. 2008;453:1051–1057.

    CAS  PubMed  Google Scholar 

  45. Zhao L, Tang Y, You Z, et al. Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression. PLoS ONE. 2011;6:e18909.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Oo YH, Banz V, Kavanagh D, et al. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J Hepatol. 2012;57:1044–1051.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Ki SH, Park O, Zheng M, et al. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology. 2010;52:1291–1300.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–238.

    CAS  PubMed  Google Scholar 

  49. Wu L, Van Kaer L. Natural killer T cells in health and disease. Front Biosci (Schol Ed). 2011;3:236–251.

    Google Scholar 

  50. Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol. 2011;11:131–142.

    CAS  PubMed  Google Scholar 

  51. Subleski JJ, Jiang Q, Weiss JM, Wiltrout RH. The split personality of NKT cells in malignancy, autoimmune and allergic disorders. Immunotherapy. 2011;3:1167–1184.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Van Kaer L, Parekh VV, Wu L. Invariant NK T cells: potential for immunotherapeutic targeting with glycolipid antigens. Immunotherapy. 2011;3:59–75.

    PubMed  Google Scholar 

  53. Zeissig S, Blumberg RS. Primary immunodeficiency associated with defects in CD1 and CD1-restricted T cells. Ann N Y Acad Sci. 2012;1250:14–24.

    CAS  PubMed  Google Scholar 

  54. Novak J, Lehuen A. Mechanism of regulation of autoimmunity by iNKT cells. Cytokine. 2011;53:263–270.

    CAS  PubMed  Google Scholar 

  55. Wehr A, Baeck C, Heymann F, et al. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis. J Immunol. 2013;190:5226–5236.

    CAS  PubMed  Google Scholar 

  56. Nowak M, Stein-Streilein J. Invariant NKT cells and tolerance. Int Rev Immunol. 2007;26:95–119.

    CAS  PubMed  Google Scholar 

  57. Dennert G, Aswad F. The role of NKT cells in animal models of autoimmune hepatitis. Crit Rev Immunol. 2006;26:453–473.

    CAS  PubMed  Google Scholar 

  58. Mattner J. Natural killer T (NKT) cells in autoimmune hepatitis. Curr Opin Immunol. 2013;25:697–703.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Hammerich L, Tacke F. Role of gamma-delta T cells in liver inflammation and fibrosis. World J Gastrointest Pathophysiol. 2014;5:107–113.

    PubMed Central  PubMed  Google Scholar 

  60. Holtmeier W, Kabelitz D. Gammadelta T cells link innate and adaptive immune responses. Chem Immunol Allergy. 2005;86:151–183.

    CAS  PubMed  Google Scholar 

  61. Wu Y, Wu W, Wong WM, et al. Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. J Immunol. 2009;183:5622–5629.

    CAS  PubMed  Google Scholar 

  62. Morita CT, Mariuzza RA, Brenner MB. Antigen recognition by human gamma delta T cells: pattern recognition by the adaptive immune system. Springer Semin Immunopathol. 2000;22:191–217.

    CAS  PubMed  Google Scholar 

  63. Rhodes KA, Andrew EM, Newton DJ, Tramonti D, Carding SR. A subset of IL-10-producing gammadelta T cells protect the liver from Listeria-elicited, CD8(+) T cell-mediated injury. Eur J Immunol. 2008;38:2274–2283.

    CAS  PubMed  Google Scholar 

  64. Hammerich L, Bangen JM, Govaere O, et al. Chemokine receptor CCR6-dependent accumulation of gammadelta T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology. 2014;59:630–642.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Wen L, Peakman M, Mieli-Vergani G, Vergani D. Elevation of activated gamma delta T cell receptor bearing T lymphocytes in patients with autoimmune chronic liver disease. Clin Exp Immunol. 1992;89:78–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Martins EB, Graham AK, Chapman RW, Fleming KA. Elevation of gamma delta T lymphocytes in peripheral blood and livers of patients with primary sclerosing cholangitis and other autoimmune liver diseases. Hepatology. 1996;23:988–993.

    CAS  PubMed  Google Scholar 

  67. Kasper HU, Ligum D, Cucus J, et al. Liver distribution of gammadelta-T-cells in patients with chronic hepatitis of different etiology. APMIS.. 2009;117:779–785.

    CAS  PubMed  Google Scholar 

  68. Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10:467–478.

    CAS  PubMed  Google Scholar 

  69. Rao R, Graffeo CS, Gulati R, et al. Interleukin 17-producing gammadeltaT cells promote hepatic regeneration in mice. Gastroenterology. 2014;147:473–484, e472.

  70. Longhi MS, Hussain MJ, Mitry RR, et al. Functional study of CD4+ CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol.. 2006;176:4484–4491.

    CAS  PubMed  Google Scholar 

  71. Singer BD, King LS, D’Alessio FR. Regulatory T cells as immunotherapy. Front Immunol. 2014;5:46.

    PubMed Central  PubMed  Google Scholar 

  72. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–1061.

    CAS  PubMed  Google Scholar 

  73. Karim M, Kingsley CI, Bushell AR, Sawitzki BS, Wood KJ. Alloantigen-induced CD25+ CD4+ regulatory T cells can develop in vivo from CD25-CD4+ precursors in a thymus-independent process. J Immunol. 2004;172:923–928.

    CAS  PubMed  Google Scholar 

  74. Lan Q, Fan H, Quesniaux V, et al. Induced Foxp3(+) regulatory T cells: a potential new weapon to treat autoimmune and inflammatory diseases? J Mol Cell Biol. 2012;4:22–28.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature. 2007;445:766–770.

    CAS  PubMed  Google Scholar 

  76. Hontecillas R, Bassaganya-Riera J. Peroxisome proliferator-activated receptor gamma is required for regulatory CD4+ T cell-mediated protection against colitis. J Immunol. 2007;178:2940–2949.

    CAS  PubMed  Google Scholar 

  77. Marra F, Efsen E, Romanelli RG, et al. Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology. 2000;119:466–478.

    CAS  PubMed  Google Scholar 

  78. Sebastiani S, Allavena P, Albanesi C, et al. Chemokine receptor expression and function in CD4+ T lymphocytes with regulatory activity. J Immunol. 2001;166:996–1002.

    CAS  PubMed  Google Scholar 

  79. Fletcher JM, Lonergan R, Costelloe L, et al. CD39+ Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol. 2009;183:7602–7610.

    CAS  PubMed  Google Scholar 

  80. Grant CR, Liberal R, Holder BS, et al. Dysfunctional CD39(POS) regulatory T cells and aberrant control of T-helper type 17 cells in autoimmune hepatitis. Hepatology. 2014;59:1007–1015.

    CAS  PubMed  Google Scholar 

  81. Sakaguchi S, Sakaguchi N. Thymus and autoimmunity: capacity of the normal thymus to produce pathogenic self-reactive T cells and conditions required for their induction of autoimmune disease. J Exp Med. 1990;172:537–545.

    CAS  PubMed  Google Scholar 

  82. Bagavant H, Thompson C, Ohno K, Setiady Y, Tung KS. Differential effect of neonatal thymectomy on systemic and organ-specific autoimmune disease. Int Immunol. 2002;14:1397–1406.

    CAS  PubMed  Google Scholar 

  83. Kido M, Watanabe N, Okazaki T, et al. Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling. Gastroenterology. 2008;135:1333–1343.

    CAS  PubMed  Google Scholar 

  84. Aoki N, Kido M, Iwamoto S, et al. Dysregulated generation of follicular helper T cells in the spleen triggers fatal autoimmune hepatitis in mice. Gastroenterology. 2011;140:1322–1333, e1321–e1325.

  85. Maruoka R, Aoki N, Kido M, et al. Splenectomy prolongs the effects of corticosteroids in mouse models of autoimmune hepatitis. Gastroenterology. 2013;145:209–220, e209.

  86. Borsellino G, Kleinewietfeld M, Di Mitri D, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225–1232.

    CAS  PubMed  Google Scholar 

  87. Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204:1257–1265.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Kobie JJ, Shah PR, Yang L, et al. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5’-adenosine monophosphate to adenosine. J Immunol. 2006;177:6780–6786.

    CAS  PubMed  Google Scholar 

  89. Liberal R, Grant CR, Holder BS, et al. The impaired immune regulation of autoimmune hepatitis is linked to a defective galectin-9/tim-3 pathway. Hepatology. 2012;56:677–686.

    CAS  PubMed  Google Scholar 

  90. Rodriguez-Manzanet R, DeKruyff R, Kuchroo VK, Umetsu DT. The costimulatory role of TIM molecules. Immunol Rev. 2009;229:259–270.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Wasmuth HE, Tacke F, Trautwein C. Chemokines in liver inflammation and fibrosis. Sem Liver Dis. 2010;30:215–225.

    CAS  Google Scholar 

  92. Lee EY, Lee ZH, Song YW. CXCL10 and autoimmune diseases. Autoimmun Rev. 2009;8:379–383.

    CAS  PubMed  Google Scholar 

  93. Antonelli A, Ferrari SM, Giuggioli D, et al. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev. 2014;13:272–280.

    CAS  PubMed  Google Scholar 

  94. Landi A, Weismuller TJ, Lankisch TO, et al. Differential serum levels of eosinophilic eotaxins in primary sclerosing cholangitis, primary biliary cirrhosis, and autoimmune hepatitis. J Interferon Cytokine Res. 2014;34:204–214.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Bourd-Boittin K, Basset L, Bonnier D, et al. CX3CL1/fractalkine shedding by human hepatic stellate cells: contribution to chronic inflammation in the liver. J Cell Mol Med. 2009;13:1526–1535.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Shimoda S, Harada K, Niiro H, et al. CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis. Hepatology. 2010;51:567–575.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Karlmark KR, Zimmermann HW, Roderburg C, et al. The fractalkine receptor CX(3)CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology. 2010;52:1769–1782.

    CAS  PubMed  Google Scholar 

  98. Aoyama T, Inokuchi S, Brenner DA, Seki E. CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology. 2010;52:1390–1400.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. White GE, Greaves DR. Fractalkine: a survivor’s guide: chemokines as antiapoptotic mediators. Arterioscler Thromb Vasc Biol. 2012;32:589–594.

    CAS  PubMed  Google Scholar 

  100. Longhi MS, Ma Y, Bogdanos DP, et al. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol. 2004;41:31–37.

    CAS  PubMed  Google Scholar 

  101. Peiseler M, Sebode M, Franke B, et al. FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency. J Hepatol. 2012;57:125–132.

    CAS  PubMed  Google Scholar 

  102. Longhi MS, Ma Y, Mitry RR, et al. Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun. 2005;25:63–71.

    CAS  PubMed  Google Scholar 

  103. Holder BS, Grant CR, Liberal R, et al. Retinoic acid stabilizes antigen-specific regulatory T-cell function in autoimmune hepatitis type 2. J Autoimmun. 2014;53:26–32.

  104. Longhi MS, Hussain MJ, Kwok WW, et al. Autoantigen-specific regulatory T cells, a potential tool for immune-tolerance reconstitution in type-2 autoimmune hepatitis. Hepatology. 2011;53:536–547.

    CAS  PubMed  Google Scholar 

  105. Lapierre P, Beland K, Yang R, Alvarez F. Adoptive transfer of ex vivo expanded regulatory T cells in an autoimmune hepatitis murine model restores peripheral tolerance. Hepatology. 2013;57:217–227.

    CAS  PubMed  Google Scholar 

  106. Gregori S, Casorati M, Amuchastegui S, et al. Regulatory T cells induced by 1 alpha,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol. 2001;167:1945–1953.

    CAS  PubMed  Google Scholar 

  107. Lim DG, Joe IY, Park YH, et al. Effect of immunosuppressants on the expansion and function of naturally occurring regulatory T cells. Transpl Immunol. 2007;18:94–100.

    CAS  PubMed  Google Scholar 

  108. Miroux C, Morales O, Ouaguia L, et al. Corticosteroids do not reverse the inhibitory effect of cyclosporine on regulatory T-cell activity in contrast to mycophenolate mofetil. Transpl Proc. 2012;44:2834–2839.

    CAS  Google Scholar 

  109. Mehling A, Grabbe S, Voskort M, et al. Mycophenolate mofetil impairs the maturation and function of murine dendritic cells. J Immunol. 2000;165:2374–2381.

    CAS  PubMed  Google Scholar 

  110. Wu T, Zhang L, Xu K, et al. Immunosuppressive drugs on inducing Ag-specific CD4(+)CD25(+)Foxp3(+) Treg cells during immune response in vivo. Transpl Immunol. 2012;27:30–38.

    PubMed  Google Scholar 

  111. Cantorna MT, Zhao J, Yang L. Vitamin D, invariant natural killer T-cells and experimental autoimmune disease. Proc Nutr Soc. 2012;71:62–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Efe C, Kav T, Aydin C, et al. Low serum vitamin D levels are associated with severe histological features and poor response to therapy in patients with autoimmune hepatitis. Dig Dis Sci. 2014;59:3035–3042.

    CAS  PubMed  Google Scholar 

  113. Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology. 2002;35:126–131.

    CAS  PubMed  Google Scholar 

  114. Fan L, Tu X, Zhu Y, et al. Genetic association of vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. J Gastroenterol Hepatol. 2005;20:249–255.

    CAS  PubMed  Google Scholar 

  115. Smyk DS, Orfanidou T, Invernizzi P, Bogdanos DP, Lenzi M. Vitamin D in autoimmune liver disease. Clin Res Hepatol Gastroenterol. 2013;37:535–545.

    CAS  PubMed  Google Scholar 

  116. Longhi MS, Meda F, Wang P, et al. Expansion and de novo generation of potentially therapeutic regulatory T cells in patients with autoimmune hepatitis. Hepatology. 2008;47:581–591.

    CAS  PubMed  Google Scholar 

  117. Longhi MS, Liberal R, Holder B, et al. Inhibition of interleukin-17 promotes differentiation of CD25(-) cells into stable T regulatory cells in patients with autoimmune hepatitis. Gastroenterology. 2012;142:1526–1535.

    CAS  PubMed  Google Scholar 

  118. Penaranda C, Bluestone JA. Is antigen specificity of autoreactive T cells the key to islet entry? Immunity. 2009;31:534–536.

    CAS  PubMed  Google Scholar 

  119. Sagoo P, Ali N, Garg G, et al. Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells. Sci Transl Med. 2011;3:83ra42.

  120. Wright GP, Notley CA, Xue SA, et al. Adoptive therapy with redirected primary regulatory T cells results in antigen-specific suppression of arthritis. Proc Natl Acad Sci USA. 2009;106:19078–19083.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Hombach AA, Kofler D, Rappl G, Abken H. Redirecting human CD4+ CD25+ regulatory T cells from the peripheral blood with pre-defined target specificity. Gene Ther. 2009;16:1088–1096.

    CAS  PubMed  Google Scholar 

  122. Jethwa H, Adami AA, Maher J. Use of gene-modified regulatory T-cells to control autoimmune and alloimmune pathology: is now the right time? Clin Immunol. 2014;150:51–63.

    CAS  PubMed  Google Scholar 

  123. Maher J. Immunotherapy of malignant disease using chimeric antigen receptor engrafted T cells. ISRN Oncol.. 2012;2012:278093.

    PubMed Central  PubMed  Google Scholar 

  124. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8:299–308.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Czaja AJ. Nonstandard drugs and feasible new interventions for autoimmune hepatitis. Part-II. Inflamm Allergy Drug Targets. 2012;11:351–363.

    CAS  PubMed  Google Scholar 

  126. Ochi H, Abraham M, Ishikawa H, et al. New immunosuppressive approaches: oral administration of CD3-specific antibody to treat autoimmunity. J Neurol Sci. 2008;274:9–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Perruche S, Zhang P, Liu Y, et al. CD3-specific antibody-induced immune tolerance involves transforming growth factor-beta from phagocytes digesting apoptotic T cells. Nat Med. 2008;14:528–535.

    CAS  PubMed  Google Scholar 

  128. Ishikawa H, Ochi H, Chen ML, et al. Inhibition of autoimmune diabetes by oral administration of anti-CD3 monoclonal antibody. Diabetes. 2007;56:2103–2109.

    CAS  PubMed  Google Scholar 

  129. Herold KC, Hagopian W, Auger JA, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346:1692–1698.

    CAS  PubMed  Google Scholar 

  130. Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010;47:115–123.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Santos ES, Arosemena LR, Raez LE, O’Brien C, Regev A. Successful treatment of autoimmune hepatitis and idiopathic thrombocytopenic purpura with the monoclonal antibody, rituximab: case report and review of literature. Liver Int. 2006;26:625–629.

    CAS  PubMed  Google Scholar 

  132. Evans JT, Shepard MM, Oates JC, Self SE, Reuben A. Rituximab-responsive cryoglobulinemic glomerulonephritis in a patient with autoimmune hepatitis. J Clin Gastroenterol. 2008;42:862–863.

    PubMed  Google Scholar 

  133. Barth E, Clawson J. A Case of Autoimmune Hepatitis Treated with Rituximab. Case Rep Gastroenterol. 2010;4:502–509.

    PubMed Central  PubMed  Google Scholar 

  134. Carey EJ, Somaratne K, Rakela J. Successful rituximab therapy in refractory autoimmune hepatitis and Evans syndrome. Rev Med Chil. 2011;139:1484–1487.

    PubMed  Google Scholar 

  135. Burak KW, Swain MG, Santodomino-Garzon T, et al. Rituximab for the treatment of patients with autoimmune hepatitis who are refractory or intolerant to standard therapy. Can J Gastroenterol. 2013;27:273–280.

    PubMed Central  PubMed  Google Scholar 

  136. Yang JQ, Kim PJ, Singh RR. Brief treatment with iNKT cell ligand alpha-galactosylceramide confers a long-term protection against lupus. J Clin Immunol. 2012;32:106–113.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Blumenfeld HJ, Tohn R, Haeryfar SM, et al. Structure-guided design of an invariant natural killer T cell agonist for optimum protection from type 1 diabetes in non-obese diabetic mice. Clin Exp Immunol. 2011;166:121–133.

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Yoshiga Y, Goto D, Segawa S, et al. Activation of natural killer T cells by alpha-carba-GalCer (RCAI-56), a novel synthetic glycolipid ligand, suppresses murine collagen-induced arthritis. Clin Exp Immunol. 2011;164:236–247.

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Maurer MF, Garrigues U, Jaspers SR, et al. Generation and characterization of human anti-human IL-21 neutralizing monoclonal antibodies. MAbs.. 2012;4:69–83.

    PubMed Central  PubMed  Google Scholar 

  140. Giannoukakis N, Phillips B, Finegold D, Harnaha J, Trucco M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care. 2011;34:2026–2032.

    PubMed Central  PubMed  Google Scholar 

  141. Moser M, De Smedt T, Sornasse T, et al. Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur J Immunol. 1995;25:2818–2824.

    CAS  PubMed  Google Scholar 

  142. Sauma D, Fierro A, Mora JR, et al. Cyclosporine preconditions dendritic cells during differentiation and reduces IL-2 and IL-12 production following activation: a potential tolerogenic effect. Transplant Proc. 2003;35:2515–2517.

    CAS  PubMed  Google Scholar 

  143. Fischer R, Turnquist HR, Taner T, Thomson AW. Use of rapamycin in the induction of tolerogenic dendritic cells. Handb Exp Pharmacol. 2009;188:215–232.

  144. Lim TS, Goh JK, Mortellaro A, et al. CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells. PLoS ONE. 2012;7:e45185.

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–776.

    CAS  PubMed  Google Scholar 

  146. Kim DH, Lee JC, Lee MK, Kim KW, Lee MS. Treatment of autoimmune diabetes in NOD mice by Toll-like receptor 2 tolerance in conjunction with dipeptidyl peptidase 4 inhibition. Diabetologia. 2012;55:3308–3317.

    CAS  PubMed  Google Scholar 

  147. Coates PT, Krishnan R, Kireta S, Johnston J, Russ GR. Human myeloid dendritic cells transduced with an adenoviral interleukin-10 gene construct inhibit human skin graft rejection in humanized NOD-scid chimeric mice. Gene Ther. 2001;8:1224–1233.

    CAS  PubMed  Google Scholar 

  148. Machen J, Harnaha J, Lakomy R, et al. Antisense oligonucleotides down-regulating costimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells. J Immunol. 2004;173:4331–4341.

    CAS  PubMed  Google Scholar 

  149. Odumosu O, Nicholas D, Payne K, Langridge W. Cholera toxin B subunit linked to glutamic acid decarboxylase suppresses dendritic cell maturation and function. Vaccine. 2011;29:8451–8458.

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Lee WS, Lee SM, Kim MK, et al. The tryptophan metabolite 3-hydroxyanthranilic acid suppresses T cell responses by inhibiting dendritic cell activation. Int Immunopharmacol. 2013;17:721–726.

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Czaja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montano-Loza, A.J., Czaja, A.J. Cell Mediators of Autoimmune Hepatitis and Their Therapeutic Implications. Dig Dis Sci 60, 1528–1542 (2015). https://doi.org/10.1007/s10620-014-3473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3473-z

Keywords

Navigation