Skip to main content
Log in

Depletion of Foxp3+ Regulatory T Cells Promotes Profibrogenic Milieu of Cholestasis-Induced Liver Injury

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Accumulating evidence suggests that Foxp3+ regulatory T (Treg) cells act as inhibitory mediators of inflammation; however, the in vivo mechanism underlying this protection remains elusive in liver diseases.

Aims

To clarify the in vivo role of Foxp3+ Treg cells in liver fibrosis, we used the DEREG mouse, which expresses the diphtheria toxin receptor under control of the Foxp3 promoter, allowing for specific deletion of Foxp3+ Treg cells.

Methods

Bile duct ligation-induced liver injury and fibrosis were assessed by histopathology, fibrogenic gene expression, and measurement of cytokine and chemokine levels.

Results

Depletion of Foxp3+ Treg cells enhanced Th17 cell response as demonstrated by the increase of IL-17+ cells and related gene expressions including Il17f, Il17ra, and Rorgt in the fibrotic livers of DEREG mice. Of note, infiltration of CD8+ T cells and Cd8 gene expression was significantly increased in the livers of DEREG mice. Consistent with increased IL-17+ and CD8+ T cell responses, DEREG mice generated higher levels of inflammatory cytokines (TNF-α, IL-6, and IL-12p70) and chemokines (MCP-1, MIP-1α, and RANTES). These results were concordant with severity of liver fibrosis and hepatic enzyme levels (ALT and ALP).

Conclusions

The present findings demonstrate that Foxp3+ Treg cells inhibit the profibrogenic inflammatory milieu through suppression of pro-fibrogenic CD8+ and IL-17+ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Friedman SL. Liver fibrosis—from bench to bedside. J Hepatol. 2003;38:S38–S53.

    Article  PubMed  Google Scholar 

  2. Marinos G, Naoumov NV, Williams R. Impact of complete inhibition of viral replication on the cellular immune response in chronic hepatitis B virus infection. Hepatology. 1996;24:991–995.

    Article  CAS  PubMed  Google Scholar 

  3. McNally A, Hill GR, Sparwasser T, Thomas R, Steptoe RJ. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis. Proc Natl Acad Sci USA. 2011;108:7529–7534.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sturm N, Thelu MA, Camous X, et al. Characterization and role of intra-hepatic regulatory T cells in chronic hepatitis C pathogenesis. J Hepatol. 2010;53:25–35.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu J, Paul WE. Heterogeneity and plasticity of T helper cells. Cell Res. 2010;20:4–12.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Li J, Qiu SJ, She WM, et al. Significance of the balance between regulatory T (Treg) and T helper 17 (Th17) cells during hepatitis B virus related liver fibrosis. PLoS ONE. 2012;7:e39307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Meng F, Wang K, Aoyama T, et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 2012;143:765–776, e761–e763.

  8. Taguchi O, Takahashi T. Administration of anti-interleukin-2 receptor alpha antibody in vivo induces localized autoimmune disease. Eur J Immunol. 1996;26:1608–1612.

    Article  CAS  PubMed  Google Scholar 

  9. McHugh RS, Shevach EM. Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J Immunol. 2002;168:5979–5983.

    Article  CAS  PubMed  Google Scholar 

  10. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6:345–352.

    Article  CAS  PubMed  Google Scholar 

  11. Leithauser F, Meinhardt-Krajina T, Fink K, Wotschke B, Moller P, Reimann J. Foxp3-expressing CD103+ regulatory T cells accumulate in dendritic cell aggregates of the colonic mucosa in murine transfer colitis Am. J Pathol. 2006;168:1898–1909.

    Google Scholar 

  12. Needham DJ, Lee JX, Beilharz MW. Intra-tumoural regulatory T cells: a potential new target in cancer immunotherapy. Biochem Biophys Res Commun. 2006;343:684–691.

    Article  CAS  PubMed  Google Scholar 

  13. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res. 1999;59:3128–3133.

    CAS  PubMed  Google Scholar 

  14. Sutmuller RP, van Duivenvoorde LM, van Elsas A, et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med. 2001;194:823–832.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol. 2005;6:331–337.

    Article  CAS  PubMed  Google Scholar 

  16. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–336.

    Article  CAS  PubMed  Google Scholar 

  17. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–1061.

    Article  CAS  PubMed  Google Scholar 

  18. Katz SC, Ryan K, Ahmed N, et al. Obstructive jaundice expands intrahepatic regulatory T cells, which impair liver T lymphocyte function but modulate liver cholestasis and fibrosis. J Immunol. 2011;187:1150–1156.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lahl K, Loddenkemper C, Drouin C, et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med. 2007;204:57–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Georgiev P, Navarini AA, Eloranta JJ, et al. Cholestasis protects the liver from ischaemic injury and post-ischaemic inflammation in the mouse. Gut. 2007;56:121–128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Arteel GE, Raleigh JA, Bradford BU, Thurman RG. Acute alcohol produces hypoxia directly in rat liver tissue in vivo: role of Kupffer cells. Am J Physiol. 1996;271:G494–G500.

    CAS  PubMed  Google Scholar 

  22. Couper KN, Blount DG, de Souza JB, Suffia I, Belkaid Y, Riley EM. Incomplete depletion and rapid regeneration of Foxp3+ regulatory T cells following anti-CD25 treatment in malaria-infected mice. J Immunol. 2007;178:4136–4146.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Yang J, Chu Y, Yang X, et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum. 2009;60:1472–1483.

    Article  PubMed  Google Scholar 

  24. Erhardt A, Biburger M, Papadopoulos T, Tiegs G. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology. 2007;45:475–485.

    Article  CAS  PubMed  Google Scholar 

  25. Moore-Connors JM, Fraser R, Halperin SA, Wang J. CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 responses and genital tract inflammation upon intracellular Chlamydia muridarum infection. J Immunol. 2013;191:3430–3439.

    Article  CAS  PubMed  Google Scholar 

  26. Liu F, Liu J, Weng D, et al. CD4+CD25+Foxp3+ regulatory T cells depletion may attenuate the development of silica-induced lung fibrosis in mice. PLoS ONE. 2010;5:e15404.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Zelenay S, Lopes-Carvalho T, Caramalho I, Moraes-Fontes MF, Rebelo M, Demengeot J. Foxp3+ CD25–CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proc Natl Acad Sci USA. 2005;102:4091–4096.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Yan B, Liu Y. The nature of increased circulating CD4CD25Foxp3 T cells in patients with systemic lupus erythematosus: a novel hypothesis. Open Rheumatol J. 2009;3:22–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Leithauser F, Meinhardt-Krajina T, Fink K, Wotschke B, Moller P, Reimann J. Foxp3-expressing CD103+ regulatory T cells accumulate in dendritic cell aggregates of the colonic mucosa in murine transfer colitis. Am J Pathol. 2006;168:1898–1909.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Bynoe MS, Evans JT, Viret C, Janeway CA Jr. Epicutaneous immunization with autoantigenic peptides induces T suppressor cells that prevent experimental allergic encephalomyelitis. Immunity. 2003;19:317–328.

    Article  CAS  PubMed  Google Scholar 

  31. Connolly MK, Bedrosian AS, Mallen-St Clair J, et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J Clin Invest. 2009;119:3213–3225.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Safadi R, Ohta M, Alvarez CE, et al. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology. 2004;127:870–882.

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, Chen S, Xu K. IL-17 expression is correlated with hepatitis B related liver diseases and fibrosis. Int J Mol Med. 2011;27:385–392.

    CAS  PubMed  Google Scholar 

  34. Zhang JY, Zhang Z, Lin F, et al. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology. 2010;51:81–91.

    Article  CAS  PubMed  Google Scholar 

  35. Lemmers A, Moreno C, Gustot T, et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology. 2009;49:646–657.

    Article  CAS  PubMed  Google Scholar 

  36. Yang J, Yang X, Zou H, Chu Y, Li M. Recovery of the immune balance between Th17 and regulatory T cells as a treatment for systemic lupus erythematosus. Rheumatology. 2011;50:1366–1372.

    Article  CAS  PubMed  Google Scholar 

  37. van den Brandt J, Fischer HJ, Walter L, Hunig T, Kloting I, Reichardt HM. Type 1 diabetes in BioBreeding rats is critically linked to an imbalance between Th17 and regulatory T cells and an altered TCR repertoire. J Immunol. 2010;185:2285–2294.

    Article  PubMed  Google Scholar 

  38. Ye ZJ, Zhou Q, Du RH, Li X, Huang B, Shi HZ. Imbalance of Th17 cells and regulatory T cells in tuberculous pleural effusion. Clin Vaccine Immunol CVI. 2011;18:1608–1615.

    Article  CAS  Google Scholar 

  39. Lin FJ, Jiang GR, Shan JP, Zhu C, Zou J, Wu XR. Imbalance of regulatory T cells to Th17 cells in IgA nephropathy. Scand J Clin Lab Invest. 2012;72:221–229.

    Article  CAS  PubMed  Google Scholar 

  40. Duffield JS, Forbes SJ, Constandinou CM, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005;115:56–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Murphy TJ, Ni Choileain N, Zang Y, Mannick JA, Lederer JA. CD4+CD25+ regulatory T cells control innate immune reactivity after injury. J Immunol. 2005;174:2957–2963.

    Article  CAS  PubMed  Google Scholar 

  42. Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med. 2003;197:111–119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Taams LS, van Amelsfort JM, Tiemessen MM, et al. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Hum Immunol. 2005;66:222–230.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (2014R1A1A1006622) and by the Brain Korea 21 Plus Program in 2013.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bumseok Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, Y.S., Park, S., Lim, C.W. et al. Depletion of Foxp3+ Regulatory T Cells Promotes Profibrogenic Milieu of Cholestasis-Induced Liver Injury. Dig Dis Sci 60, 2009–2018 (2015). https://doi.org/10.1007/s10620-014-3438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3438-2

Keywords

Navigation