Skip to main content

Advertisement

Log in

Decreases in Activated CD8+ T Cells in Patients with Severe Hepatitis B Are Related to Outcomes

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Many studies on T helper (Th)1, Th2, T regulatory and Th17 cells have been carried out in acute-on-chronic liver failure (ACLF). However, CD8+ T cell, as a main participant in immune-mediated injuries and defense against microorganisms, has seldom been studied in ACLF.

Aims

The purpose of this study was to investigate the CD8+ T cell function, and the outcomes of patients with severe hepatitis [SH; serum bilirubin (SB) ≥10 mg/dl and prothrombin activity (PTA) <60 %].

Methods

Thirty-six patients with chronic HBV-associated SH were included. Twenty normal chronic hepatitis B (CHB) patients (2 < SB < 10 (mg/dl) and PTA ≥ 60 %) and 28 healthy volunteers were enrolled as control groups.

Results

Twenty-six patients with SH were diagnosed with ACLF (SB ≥ 10 mg/dl and PTA ≤ 40 %). The non-recovered ACLFs (NR-ACLF) had higher HBV DNA loads than recovered ACLFs (R-ACLF) (6.03 ± 1.79 vs. 4.36 ± 1.61 (log10, IU/L)). The NR-ACLFs had the highest neutrophil:lymphocyte ratios (5.10 ± 2.37) (all P < 0.001; a = 0.05). The CHBs had higher perforin+ and TCM (CD45RACD62LhiCCR7+) proportions [31.28 ± 19.51, 5.32 ± 3.57 (%)] compared to R-ACLFs (11.75 ± 15.35, 0.78 ± 0.76 (%); P = 0.004, 0.001, respectively), or NR-ACLFs (11.61 ± 5.79, 1.14 ± 0.67 (%); P = 0.006, 0.003). The non-ACLF SHs had higher CD38+ proportions than R-ACLFs or NR-ACLFs (25.46 ± 8.02 vs. 16.24 ± 7.77 or 16.81 ± 6.30 (%), P = 0.039, 0.023).

Conclusions

High neutrophil:lymphocyte ratios and a decrease in activated CD8+ T cells may be related to poor outcomes in patients with SH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maino VC, Suni MA, Ruitenberg JJ. Rapid flow cytometric method for measuring lymphocyte subset activation. Cytometry. 1995;20:127–133.

    Article  CAS  PubMed  Google Scholar 

  2. Amlot PL, Tahami F, Chinn D, et al. Activation antigen expression on human T cells. I. Analysis by two-colour flow cytometry of umbilical cord blood, adult blood and lymphoid tissue. Clin Exp Immunol. 1996;105:176–182.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Schwulst SJ, Muenzer JT, Chang KC, et al. Lymphocyte phenotyping to distinguish septic from nonseptic critical illness. J Am Coll Surg. 2008;206:335–342.

    Article  PubMed  Google Scholar 

  4. Cesano A, Visonneau S, Deaglio S, et al. Role of CD38 and its ligand in the regulation of MHC-nonrestricted cytotoxic T cells. J Immunol. 1998;160:1106–1115.

    CAS  PubMed  Google Scholar 

  5. Chini EN. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr Pharm Des. 2009;15:57–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Watanabe Y, Morita M, Akaike T. Concanavalin A induces perforin-mediated but not Fas-mediated hepatic injury. Hepatology. 1996;24:702–710.

    Article  CAS  PubMed  Google Scholar 

  7. Roth E, Pircher H. IFN-gamma promotes Fas ligand- and perforin-mediated liver cell destruction by cytotoxic CD8 T cells. J Immunol. 2004;172:1588–1594.

    Article  CAS  PubMed  Google Scholar 

  8. Carotenuto P, Artsen A, Osterhaus AD, et al. Reciprocal changes of naïve and effector/memory CD8 + T lymphocytes in chronic hepatitis B virus infection. Viral Immunol. 2011;24:27–33.

    Article  CAS  PubMed  Google Scholar 

  9. Michie CA, McLean A, Alcock C, et al. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature. 1992;360:264–265.

    Article  CAS  PubMed  Google Scholar 

  10. Sallusto F, Lenig D, Förster R, et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401:708–712.

    Article  CAS  PubMed  Google Scholar 

  11. Belz GT, Kallies A. Effector and memory CD8 + T cell differentiation: toward a molecular understanding of fate determination. Curr Opin Immunol. 2010;22:279–285.

    Article  CAS  PubMed  Google Scholar 

  12. Sarin SK, Kumar A, Almeida JA, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol Int. 2009;3:269–282.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dunn C, Brunetto M, Reynolds G, et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med. 2007;204:667–680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Rehermann B. Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat Med. 2013;19:859–868.

    Article  CAS  PubMed  Google Scholar 

  15. Wesche-Soldato DE, Chung CS, Gregory SH, et al. CD8 + T cells promote inflammation and apoptosis in the liver after sepsis: role of Fas-FasL. Am J Pathol. 2007;171:87–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wasmuth HE, Kunz D, Yagmur E, et al. Patients with acute on chronic liver failure display ‘sepsis-like’ immune paralysis. J Hepatol. 2005;42:195–201.

    Article  CAS  PubMed  Google Scholar 

  17. Shin H, Wherry EJ. CD8 T cell dysfunction during chronic viral infection. Curr Opin Immunol. 2007;19:408–415.

    Article  CAS  PubMed  Google Scholar 

  18. Lou YF, Dong W, Ye B, et al. Changes in peripheral T-lymphocyte subsets in acute-on-chronic liver failure patients with artificial liver support system. Hepatogastroenterology. 2012;59:814–817.

    CAS  PubMed  Google Scholar 

  19. Chalasani N, Kahi C, Francois F, et al. Model for end-stage liver disease (MELD) for predicting mortality in patients with acute variceal bleeding. Hepatology. 2002;35:1282–1284.

    Article  PubMed  Google Scholar 

  20. Selabe SG, Lukhwareni A, Song E, et al. Mutations associated with lamivudine-resistance in therapy-naïve hepatitis B virus (HBV) infected patients with and without HIV co-infection: implications for antiretroviral therapy in HBV and HIV co-infected South African patients. J Med Virol. 2007;79:1650–1654.

    Article  CAS  PubMed  Google Scholar 

  21. Fuss IJ, Kanof ME, Smith PD, Zola H. Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr Protoc Immunol. 2009; Chapter 7:Unit 7.1.

  22. Aandahl EM, Michaëlsson J, Moretto WJ, et al. Human CD4 + CD25 + regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J Virol. 2004;78:2454–2459.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Biolegend. Technical resources. 2014. http://www.biolegend.com/support. Accessed 22 July 2014.

  24. Katoonizadeh A, Laleman W, Verslype C, et al. Early features of acute-on-chronic alcoholic liver failure: a prospective cohort study. Gut. 2010;59:1561–1569.

    Article  PubMed  Google Scholar 

  25. Higuchi N, Kato M, Kotoh K, et al. Methylprednisolone injection via the portal vein suppresses inflammation in acute liver failure induced in rats by lipopolysaccharide and d-galactosamine. Liver Int. 2007;27:1342–1348.

    Article  CAS  PubMed  Google Scholar 

  26. Fujiwara K, Yasui S, Yonemitsu Y, et al. Efficacy of combination therapy of antiviral and immunosuppressive drugs for the treatment of severe acute exacerbation of chronic hepatitis B. J Gastroenterol. 2008;43:711–719.

    Article  CAS  PubMed  Google Scholar 

  27. Ye Y, Xie X, Yu J, et al. Involvement of Th17 and Th1 effector responses in patients with Hepatitis B. J Clin Immunol. 2010;30:546–555.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang JY, Zhang Z, Lin F, et al. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology. 2010;51:81–91.

    Article  CAS  PubMed  Google Scholar 

  29. Zou Z, Xu D, Li B, et al. Compartmentalization and its implication for peripheral immunologically-competent cells to the liver in patients with HBV-related acute-on-chronic liver failure. Hepatol Res. 2009;39:1198–1207.

    Article  CAS  PubMed  Google Scholar 

  30. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–763.

    Article  CAS  PubMed  Google Scholar 

  31. Lee S, Hammond T, Watson MW, et al. Could a loss of memory T cells limit responses to hepatitis C virus (HCV) antigens in blood leucocytes from patients chronically infected with HCV before and during pegylated interferon-alpha and ribavirin therapy? Clin Exp Immunol. 2010;161:118–126.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kaech SM, Wherry EJ. Heterogeneity and cell-fate decisions in effector and memory CD8 + T cell differentiation during viral infection. Immunity. 2007;27:393–405.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Sauce D, Larsen M, Leese AM, et al. IL-7R alpha versus CCR7 and CD45 as markers of virus-specific CD8 + T cell differentiation: contrasting pictures in blood and tonsillar lymphoid tissue. J Infect Dis. 2007;195:268–278.

    Article  CAS  PubMed  Google Scholar 

  34. Woodland DL, Kohlmeier JE. Migration, maintenance and recall of memory T cells in peripheral tissues. Nat Rev Immunol. 2009;9:153–161.

    Article  CAS  PubMed  Google Scholar 

  35. Sarkar S, Kalia V, Haining WN, et al. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J Exp Med. 2008;205:625–640.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Rubinstein MP, Lind NA, Purton JF, et al. IL-7 and IL-15 differentially regulate CD8 + T cell subsets during contraction of the immune response. Blood. 2008;112:3704–3712.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Rolando N, Wade J, Davalos M, et al. The systemic inflammatory response syndrome in acute liver failure. Hepatology. 2000;32:734–739.

    Article  CAS  PubMed  Google Scholar 

  38. Vaquero J, Polson J, Chung C, et al. Infection and the progression of hepatic encephalopathy in acute liver failure. Gastroenterology. 2003;125:755–764.

    Article  PubMed  Google Scholar 

  39. Antoniades CG, Berry PA, Wendon JA, et al. The importance of immune dysfunction in determining outcome in acute liver failure. J Hepatol. 2008;49:845–861.

    Article  CAS  PubMed  Google Scholar 

  40. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol. 2005;5:215–229.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the staff of Professor L.M. Deng (President of the State Key Laboratory of Oncology in Southern China) for allowing access to flow cytometry testing.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Gao.

Electronic supplementary material

Flow cytometry testing for CD8+ T cell subsets in PBMCs. CD69, CD38, CD45RO, and perforin levels were analyzed in CD3+CD8+ gates. CCR7 levels were analyzed in CD45RA- gates (HC: healthy control; N-LF: non-ACLF; R-LF: recovered ACLF; U-LF: non-recovered ACLF).

10620_2014_3297_MOESM1_ESM.jpg

Supplementary Fig. 1. Flow cytometry testing for CD8+ T cell subsets in PBMCs. CD69, CD38, CD45RO, and perforin levels were analyzed in CD3+CD8+ gates. CCR7 levels were analyzed in CD45RA gates (HC healthy control, N-LF non-ACLF, R-LF recovered ACLF, U-LF non-recovered ACLF)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Liu, J., Lai, Q. et al. Decreases in Activated CD8+ T Cells in Patients with Severe Hepatitis B Are Related to Outcomes. Dig Dis Sci 60, 136–145 (2015). https://doi.org/10.1007/s10620-014-3297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3297-x

Keywords

Navigation