Skip to main content

Advertisement

Log in

Effect of Biliary Cirrhosis on Neurogenic Relaxation of Rat Gastric Fundus and Anococcygeus Muscle: Role of Nitric Oxide Pathway

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Cirrhosis, associated with a host of hemodynamic abnormalities, could affect the gastrointestinal (GI) tract motility. On the other hand, the nonadrenergic noncholinergic (NANC) neurotransmission has been shown to play a pivotal role in GI tract motility and has been linked with release of nitric oxide (NO) on electrical stimulation. In this study, we investigated the effect of biliary cirrhosis on the neurogenic relaxation of rat gastric fundus and anococcygeus muscle and also the possible role of nitric oxide system in this manner.

Methods

Isolated gastric fundus and anococcygeus strips of sham-operated and biliary cirrhotic (4 weeks after bile duct ligation) rats were mounted under tension in a standard organ bath. Electrical stimulation was applied to obtain NANC-mediated relaxations in precontracted gastric fundus and anococcygeus muscle. The neurogenic relaxations were examined in the presence of different doses of NO synthase inhibitor, N w-Nitro-l-Arginine Methyl Ester (l-NAME). The concentration-dependent relaxant responses to the NO donor sodium nitroprusside were also evaluated.

Results

The neurogenic relaxation of both gastric fundus and anococcygeus muscle was significantly (P < 0.001) increased in cirrhotic animals. l-NAME (0.03–1,000 µM) inhibited relaxations in both groups in a dose-dependent manner (P < 0.001), but cirrhotic groups were more resistant to the inhibitory effects of l-NAME (P < 0.01). Sodium nitroprusside-mediated relaxations were similar in two groups.

Conclusions

This study for the first time demonstrated that cirrhosis increases the NO-mediated neurogenic relaxation of both rat gastric fundus and anococcygeus muscle, suggesting a crucial role for the neurogenic NO in the pathophysiology of disturbed GI motility in cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thalheimer U, Triantos CK, Samonakis DN, Patch D, Burroughs AK. Infection, coagulation, and variceal bleeding in cirrhosis. Gut. 2005;54:556–563.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Kalaitzakis E, Sadik R, Holst JJ, Ohman L, Bjornsson E. Gut transit is associated with gastrointestinal symptoms and gut hormone profile in patients with cirrhosis. Clin Gastroenterol Hepatol.. 2009;7:346–352.

    Article  PubMed  CAS  Google Scholar 

  3. Kalaitzakis E, Simren M, Abrahamsson H, Bjornsson E. Role of gastric sensorimotor dysfunction in gastrointestinal symptoms and energy intake in liver cirrhosis. Scand J Gastroenterol. 2007;42:237–246.

    Article  PubMed  Google Scholar 

  4. Madrid AM, Cumsille F, Defilippi C. Altered small bowel motility in patients with liver cirrhosis depends on severity of liver disease. Dig Dis Sci. 1997;42:738–742.

    Article  PubMed  CAS  Google Scholar 

  5. Jin JG, Katsoulis S, Schmidt WE, Grider JR. Inhibitory transmission in tenia coli mediated by distinct vasoactive intestinal peptide and apamin-sensitive pituitary adenylate cyclase activating peptide receptors. J Pharmacol Exp Ther. 1994;270:433–439.

    PubMed  CAS  Google Scholar 

  6. Vallance P, Moncada S. Hyperdynamic circulation in cirrhosis: a role for nitric oxide? Lancet. 1991;337:776–778.

    Article  PubMed  CAS  Google Scholar 

  7. McNaughton L, Puttagunta L, Martinez-Cuesta MA, et al. Distribution of nitric oxide synthase in normal and cirrhotic human liver. Proc Natl Acad Sci U S A.. 2002;99:17161–17166.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Van de Casteele M, Omasta A, Janssens S, et al. In vivo gene transfer of endothelial nitric oxide synthase decreases portal pressure in anaesthetised carbon tetrachloride cirrhotic rats. Gut. 2002;51:440–445.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodes J. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology. 1988;8:1151–1157.

    Article  PubMed  CAS  Google Scholar 

  10. Lee FY, Wang SS, Tsai YT, et al. Aminoguanidine corrects hyperdynamic circulation without ameliorating portal hypertension and portal hypertensive gastropathy in anesthetized portal hypertensive rats. J Hepatol. 1997;26:687–693.

    Article  PubMed  CAS  Google Scholar 

  11. Xu L, Carter EP, Ohara M, et al. Neuronal nitric oxide synthase and systemic vasodilation in rats with cirrhosis. Am J Physiol Renal Physiol.. 2000;279:F1110–F1115.

    PubMed  CAS  Google Scholar 

  12. Liu H, Gaskari SA, Lee SS. Cardiac and vascular changes in cirrhosis: pathogenic mechanisms. World J Gastroenterol. 2006;12:837–842.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Guarner C, Soriano G, Tomas A, et al. Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepatology. 1993;18:1139–1143.

    Article  PubMed  CAS  Google Scholar 

  14. Albornoz L, Motta A, Alvarez D, et al. Nitric oxide synthase activity in the splanchnic vasculature of patients with cirrhosis: relationship with hemodynamic disturbances. J Hepatol. 2001;35:452–456.

    Article  PubMed  CAS  Google Scholar 

  15. Li CG, Rand MJ. Nitric oxide and vasoactive intestinal polypeptide mediate non-adrenergic, non-cholinergic inhibitory transmission to smooth muscle of the rat gastric fundus. Eur J Pharmacol. 1990;191:303–309.

    Article  PubMed  CAS  Google Scholar 

  16. Desai KM, Sessa WC, Vane JR. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature. 1991;351:477–479.

    Article  PubMed  CAS  Google Scholar 

  17. Boeckxstaens GE, Pelckmans PA, Bogers JJ, et al. Release of nitric oxide upon stimulation of nonadrenergic noncholinergic nerves in the rat gastric fundus. J Pharmacol Exp Ther. 1991;256:441–447.

    PubMed  CAS  Google Scholar 

  18. Boeckxstaens GE, Pelckmans PA, De Man JG, Bult H, Herman AG, Van Maercke YM. Evidence for a differential release of nitric oxide and vasoactive intestinal polypeptide by nonadrenergic noncholinergic nerves in the rat gastric fundus. Arch Int Pharmacodyn Ther. 1992;318:107–115.

    PubMed  CAS  Google Scholar 

  19. Gibson A, McFadzean L. Biology of the anococcygeus muscle. Int Rev Cytol. 2001;205:1–35.

    Article  PubMed  CAS  Google Scholar 

  20. Kasakov L, Belai A, Vlaskovska M, Burnstock G. Noradrenergic-nitrergic interactions in the rat anococcygeus muscle: evidence for postjunctional modulation by nitric oxide. Br J Pharmacol. 1994;112:403–410.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Hobbs AJ, Gibson A. L-NG-nitro-arginine and its methyl ester are potent inhibitors of non-adrenergic, non-cholinergic transmission in the rat anococcygeus. Br J Pharmacol. 1990;100:749–752.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Karimollah AR, Ghasemi M, Ghahremani MH, Dehpour AR. Inhibition by lithium of the nitrergic relaxation of rat anococcygeus muscle. Nitric Oxide. 2009;20:31–38.

    Article  PubMed  CAS  Google Scholar 

  23. Ghasemi M, Sadeghipour H, Shafaroodi H, et al. Role of the nitric oxide pathway and the endocannabinoid system in neurogenic relaxation of corpus cavernosum from biliary cirrhotic rats. Br J Pharmacol. 2007;151:591–601.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Moezi L, Gaskari SA, Liu H, Baik SK, Dehpour AR, Lee SS. Anandamide mediates hyperdynamic circulation in cirrhotic rats via CB(1) and VR(1) receptors. Br J Pharmacol. 2006;149:898–908.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Jimenez-Altayo F, Giraldo J, McGrath JC, Vila E. Enhanced noradrenergic transmission in the spontaneously hypertensive rat anococcygeus muscle. Br J Pharmacol. 2003;140:773–779.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Ghasemi M, Karimollah AR, Dehpour AR. Nitric oxide involvement in the effect of acute lithium administration on the nonadrenergic noncholinergic-mediated relaxation of rat gastric fundus. Nitric Oxide. 2007;17:152–159.

    Article  PubMed  CAS  Google Scholar 

  27. Trevisani F, Sica G, Bernardi M. Autonomic neuropathy in advanced liver disease. Hepatology. 1996;24:1549.

    Article  PubMed  CAS  Google Scholar 

  28. Oliver MI, Miralles R, Rubies-Prat J, et al. Autonomic dysfunction in patients with non-alcoholic chronic liver disease. J Hepatol. 1997;26:1242–1248.

    Article  PubMed  CAS  Google Scholar 

  29. Thuluvath PJ, Triger DR. Autonomic neuropathy and chronic liver disease. Q J Med.. 1989;72:737–747.

    PubMed  CAS  Google Scholar 

  30. Chang CS, Kao CH, Yeh HZ, Lien HC, Chen GH, Wang SJ. Helicobacter pylori infection and gastric emptying in cirrhotic patients with symptoms of dyspepsia. Hepatogastroenterology. 1999;46:3166–3171.

    PubMed  CAS  Google Scholar 

  31. Dehpour AR, Seyyedi A, Rastegar H, et al. The nonadrenergic noncholinergic relaxation of anococcygeus muscles of bile duct-ligated rats. Eur J Pharmacol. 2002;445:31–36.

    Article  PubMed  CAS  Google Scholar 

  32. Sadeghipour H, Dehghani M, Dehpour AR. Role of opioid and nitric oxide systems in the nonadrenergic noncholinergic-mediated relaxation of corpus cavernosum in bile duct-ligated rats. Eur J Pharmacol. 2003;460:201–207.

    Article  PubMed  CAS  Google Scholar 

  33. Rand MJ, Li CG. Effects of ethanol and other aliphatic alcohols on NO-mediated relaxations in rat anococcygeus muscles and gastric fundus strips. Br J Pharmacol. 1994;111:1089–1094.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Storr M, Gaffal E, Saur D, Schusdziarra V, Allescher HD. Effect of cannabinoids on neural transmission in rat gastric fundus. Can J Physiol Pharmacol. 2002;80:67–76.

    Article  PubMed  CAS  Google Scholar 

  35. Gillespie JS. The rat anococcygeus muscle and its response to nerve stimulation and to some drugs. Br J Pharmacol. 1972;45:404–416.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Hori N, Wiest R, Groszmann RJ. Enhanced release of nitric oxide in response to changes in flow and shear stress in the superior mesenteric arteries of portal hypertensive rats. Hepatology. 1998;28:1467–1473.

    Article  PubMed  CAS  Google Scholar 

  37. Cahill PA, Redmond EM, Hodges R, Zhang S, Sitzmann JV. Increased endothelial nitric oxide synthase activity in the hyperemic vessels of portal hypertensive rats. J Hepatol. 1996;25:370–378.

    Article  PubMed  CAS  Google Scholar 

  38. Ros J, Jimenez W, Lamas S, et al. Nitric oxide production in arterial vessels of cirrhotic rats. Hepatology. 1995;21:554–560.

    PubMed  CAS  Google Scholar 

  39. Butterworth RF. Complications of cirrhosis III. Hepatic encephalopathy. J Hepatol. 2000;32:171–180.

    Article  PubMed  CAS  Google Scholar 

  40. Hernandez R, Martinez-Lara E, Del Moral ML, et al. Upregulation of endothelial nitric oxide synthase maintains nitric oxide production in the cerebellum of thioacetamide cirrhotic rats. Neuroscience. 2004;126:879–887.

    Article  PubMed  CAS  Google Scholar 

  41. Goh BJ, Tan BT, Hon WM, Lee KH, Khoo HE. Nitric oxide synthase and heme oxygenase expressions in human liver cirrhosis. World J Gastroenterol. 2006;12:588–594.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Montes S, Perez-Severiano F, Vergara P, Segovia J, Rios C, Muriel P. Nitric oxide production in striatum and pallidum of cirrhotic rats. Neurochem Res. 2006;31:11–20.

    PubMed  CAS  Google Scholar 

  43. Wei CL, Khoo HE, Lee KH, Hon WM. Differential expression and localization of nitric oxide synthases in cirrhotic livers of bile duct-ligated rats. Nitric Oxide. 2002;7:91–102.

    Article  PubMed  CAS  Google Scholar 

  44. Biecker E, Neef M, Sagesser H, Shaw S, Koshy A, Reichen J. Nitric oxide synthase 1 is partly compensating for nitric oxide synthase 3 deficiency in nitric oxide synthase 3 knock-out mice and is elevated in murine and human cirrhosis. Liver Int.. 2004;24:345–353.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Dehpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M., Karimollah, A.R., Bakhtiari, B. et al. Effect of Biliary Cirrhosis on Neurogenic Relaxation of Rat Gastric Fundus and Anococcygeus Muscle: Role of Nitric Oxide Pathway. Dig Dis Sci 59, 2675–2681 (2014). https://doi.org/10.1007/s10620-014-3225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3225-0

Keywords

Navigation