Skip to main content
Log in

Weak aggregating specialist algorithm for online portfolio selection

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

This paper proposes a novel online learning algorithm, named weak aggregating specialist algorithm (WASA), and presents its theoretical bound. This algorithm has a flexible feature, which is to allow abandoning some expert advice according to pre-set rules. Based on this algorithm, a new online portfolio strategy named weak aggregating specialized CRP (WASC) is designed, which only aggregates awake specialized expert advice. Firstly, a pool of special constant rebalanced portfolios \(\text {CRP}({\textbf{b}})\) strategies is employed to construct the index set of specialized experts. Secondly, a distance function is exploited to measure the distance between the current adjusted portfolio and each specialized expert advice, and the index set of awake specialized experts is constructed. Finally, the portfolio is updated by aggregating all awake specialized expert advice. Furthermore, theoretical and experimental analyses are established to illustrate the performance of the proposed strategy WASC. Theoretical results guarantee that WASC performs as well as the best specialized expert. Experimental results show that WASC outperforms some existing strategies in terms of the return and risk metrics, which illustrates its effectiveness in various real financial markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal, A., Hazan, E., Kale, S., & Schapire, R. E. (2006). Algorithms for portfolio management based on the Newton method. In Proceedings of the international conference on machine learning (pp. 9–16).

  • Albeverio, S., Lao, L. J., & Zhao, X. L. (2001). On-line portfolio selection strategy with prediction in the presence of transaction costs. Mathematical Methods of Operations Research, 54(1), 133–161.

    Article  Google Scholar 

  • Blum, A., & Kalai, A. (1999). Universal portfolios with and without transaction costs. Machine Learning, 35, 193–205.

    Article  Google Scholar 

  • Borodin, A., El-Yaniv, R., & Gogan, V. (2004). Can we learn to beat the best stock. Journal of Artificial Intelligence Research, 21, 579–594.

    Article  Google Scholar 

  • Cai, X., & Ye, Z. K. (2019). Gaussian weighting reversion strategy for accurate online portfolio selection. IEEE Transactions Signal Processing, 67(21), 5558–5570.

    Article  Google Scholar 

  • Cover, T. M. (1991). Universal portfolios. Mathematical Finance, 1(1), 1–29.

    Article  Google Scholar 

  • Cover, T. M., & Ordentlich, E. (1996). Universal portfolio with side information. IEEE Transactions on Information Theory, 42(2), 348–363.

    Article  Google Scholar 

  • Cuchiero, C., Schachermayer, W., & Wong, T. K. L. (2019). Cover’s universal portfolio, stochastic portfolio theory, and the numéraire portfolio. Mathematical Finance, 29(3), 773–803.

    Article  Google Scholar 

  • Dai, H. L., Liang, C. X., & Dai, H. M. (2022). An online portfolio strategy based on trend promote price tracing ensemble learning algorithm. Knowledge-Based Systems, 239, 107957.

    Article  Google Scholar 

  • Das, P., & Banerjee, A. (2011). Meta optimization and its application to portfolio selection.

  • Fagiuoli, E., Stella, F., & Ventura, A. (2007). Constant rebalanced portfolios and side-information. Quantitative Finance, 7(2), 161–173.

    Article  Google Scholar 

  • Gaivoronski, A. A., & Stella, F. (2000). Stochastic nonstationary optimization for finding universal portfolios. Annals of Operations Research, 100(1–4), 165–188.

    Article  Google Scholar 

  • Györfi, L., Lugosi, G., & Udina, F. (2006). Nonparametric kernel-based sequential investment strategies. Mathematical Finance, 16(2), 337–357.

    Article  Google Scholar 

  • Györfi, L., Udina, F., & Walk, H. (2008). Nonparametric nearest neighbor based empirical portfolio selection strategies. Statistics & Decisions, 26(2), 145–157.

    Article  Google Scholar 

  • Guan, H., & An, Z. Y. (2019). A local adaptive learning system for online portfolio selection. Knowledge-Based Systems, 186, 104958.

    Article  Google Scholar 

  • Guasoni, P., & Weber, M. H. (2020). Nonlinear price impact and portfolio choice. Mathematical Finance, 30(2), 341–376.

    Article  Google Scholar 

  • Hazan, E., & Kale, S. (2015). An online portfolio selection algorithm with regret logarithmic in price variation. Mathematical Finance, 25(2), 288–310.

    Article  Google Scholar 

  • Ha, Y. M., & Zhang, H. (2020). Algorithmic trading for online portfolio selection under limited market liquidity. European Journal of Operational Research, 286(3), 1033–1051.

    Article  Google Scholar 

  • Helmbold, D. P., Schapire, R. E., Singer, Y., & Warmuth, M. K. (1998). On-line portfolio selection using multiplicative updates. Mathematical Finance, 8(4), 325–347.

    Article  Google Scholar 

  • Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58, 13–30.

    Article  Google Scholar 

  • Huang, D. J., Yu, S. C., Li, B., Hoi, S. C. H., & Zhou, S. G. (2018). Combination forecasting reversion strategy for online portfolio selection. ACM Transactions on Intelligent Systems and Technology, 9(5), 58.

    Article  Google Scholar 

  • Huang, D. J., Yu, S. C., Li, B., Hoi, S. C. H., & Zhou, S. G. (2016). Robust median reversion strategy for on-line portfolio selection. IEEE Transactions on Knowledge and Data Engineering, 28, 2480–2493.

    Article  Google Scholar 

  • Kalai, A., & Vempala, S. (2002). Efficient algorithms for universal portfolios. Journal of Machine Learning Research, 3(3), 423–440.

    Google Scholar 

  • Kalnishkan, Y., & Vyugin, M. V. (2008). The weak aggregating algorithm and weak mixability. The Journal of Computer and System Sciences, 74(8), 1228–1244.

    Article  Google Scholar 

  • Kelly, J., Jr. (1956). A new interpretation of information rate. Bell Systems Technical Journal, 2(3), 917–926.

    Article  Google Scholar 

  • Khedmati, M., & Azin, P. (2020). An online portfolio selection algorithm using clustering approaches and considering transaction costs. Expert Systems with Applications, 159, 113546.

    Article  Google Scholar 

  • Levina, T., Levin, Y., Mcgill, J., Nediak, M., & Vovk, V. (2010). Weak aggregating algorithm for the distribution-free perishable inventory problem. Operations Research Letters, 38(6), 516–521.

    Article  Google Scholar 

  • Lai, Z. R., Yang, P. Y., Fang, L. D., & Wu, X. T. (2020). Reweighted price relative tracking system for automatic portfolio optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(11), 4349–4361.

    Article  Google Scholar 

  • Li, B., Hoi, S. C. H., & Gopalkrishnan, V. (2011). CORN: Correlation-driven nonparametric learning approach for portfolio selection. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–29.

    Article  Google Scholar 

  • Li, B., Zhao, P. L., Hoi, S. C. H., & Gopalkrishnan, V. (2012). PAMR: Passive aggressive mean reversion strategy for portfolio selection. Machine Learning, 87(2), 221–258.

    Article  Google Scholar 

  • Li, B., Hoi, S. C. H., Sahoo, D., & Liu, Z. Y. (2015). Moving average reversion strategy for on-line portfolio selection. Artificial Intelligence, 222, 104–123.

    Article  Google Scholar 

  • Li, B., Wang, J. L., Huang, D. J., & Hoi, S. C. H. (2018). Transaction cost optimization for online portfolio selection. Quantitative Finance, 18, 1411–1424.

    Article  Google Scholar 

  • Li, J. H., Zhang, Y., Yang, X. Y., & Chen, L. W. (2023). Online portfolio management via deep reinforcement learning with high-frequency data. Information Processing and Management, 60(3), 103247.

    Article  Google Scholar 

  • Li, Y. Y., Zheng, X. L., Chen, C. C., Wang, J. W., & Xu, S. (2022). Exponential gradient with momentum for online portfolio selection. Expert Systems with Applications, 187(3), 115889.

    Article  Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Mohr, E., & Dochow, R. (2017). Risk management strategies for finding universal portfolios. Annals of Operations Research, 256(1), 129–147.

    Article  Google Scholar 

  • O’Sullivan, P., & Edelman, D. (2015). Adaptive universal portfolios. The European Journal of Finance, 21(4), 337–351.

    Article  Google Scholar 

  • Wang, X., Sun, T., & Liu, Z. (2020). Kernel-based aggregating learning system for online portfolio optimization (p. 6595329). Article: Mathematical Problems in Engineering.

  • Wesselhofft, N., & Hardle, W. K. (2020). Constrained Kelly portfolios under alpha-stable laws. Computational Economics, 55(3), 801–826.

    Article  Google Scholar 

  • Yang, X. Y., He, J. A., Lin, H., & Zhang, Y. (2020). Boosting exponential gradient strategy for online portfolio selection: an aggregating experts’ advice method. Computational Economics, 55(1), 231–251.

    Article  Google Scholar 

  • Zhang, W. G., Zhang, Y., Yang, X. Y., & Xu, W. J. (2012). A class of on-line portfolio selection algorithms based on linear learning. Applied Mathematics and Computation, 218, 11832–11841.

    Article  Google Scholar 

  • Zhang, Y., Yang, X. Y., Zhang, W. G., & Chen, W. W. (2020). Online ordering rules for the multi-period newsvendor problem with quantity discounts. Annals of Operations Research, 288(1), 495–524.

    Article  Google Scholar 

  • Zhang, Y., & Yang, X. Y. (2017). Online portfolio selection strategy based on combining experts’ advice. Computational Economics, 50(1), 141–159.

    Article  Google Scholar 

  • Zhang, Y., Lin, H., Yang, X. Y., & Long, W. R. (2021). Combining expert weights for online portfolio selection based on the gradient descent algorithm. Knowledge-Based Systems, 234, 107533.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 72274224) and the Humanities and Social Science Foundation of the Ministry of Education of China (No. 21YJA790044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin’an He or Fangping Peng.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Yin, S. & Peng, F. Weak aggregating specialist algorithm for online portfolio selection. Comput Econ (2023). https://doi.org/10.1007/s10614-023-10411-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10614-023-10411-5

Keywords

Navigation