Skip to main content

Advertisement

Log in

Where has All the Education Gone? Everywhere But into Growth

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Pritchett (World Bank Econ Rev 15(3):367–391, 2001) asked a famous question, “Where has all the education gone?” This brought the lack of correlation between the growth in measured education and the growth in income in developing countries to broad attention. Empirical findings confirm that after World War Two, human capital-output ratios have tended to be higher in less developed countries than in developed countries. We explain this pattern using a dynamic general equilibrium model with signaling games that explicitly considers the following: (1) workers with different abilities have different costs when choosing their educational levels, (2) employers are unable to directly observe workers’ abilities, and (3) worldwide governments broadly subsidize educational expenditure. Our simulation results suggest that modeling specifications with educational pooling and public subsidies to schooling could well mimic the related features of the data, and consequently these two factors could be especially important for explaining these features even though many other potential factors could also affect both economic growth and human capital accumulation simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Benhabib and Spiegel (1994) actually found even earlier what Pritchett (2001) claimed, i.e., in the long run, economic growth correlates with the change in education during the same period in a negative, though statistically insignificant, manner. However, Benhabib and Spiegel directly took imputed average schooling years as the stock of “human capital,” which has now been replaced by the more sophisticated micro-based approach.

  2. Relative per capita human capital index is based on the “hc” variable in PWT 8.0. Income per capita is calculated by the “rgdpe” and “pop” variables. Physical capital is calculated by “ck” and “pop.” Physical capital can also be calculated by “rk” and “pop”; however, both yield similar patterns.

  3. They are China, India, US, Indonesia, Brazil, Pakistan, Bangladesh, Japan, Mexico, Philippines, Egypt, Germany, Iran, Turkey, Thailand, France, UK, Italy, South Africa, Republic of Korea, Colombia, Spain, Tanzania, Argentina, Kenya, Canada, Morocco, Uganda, Venezuela, Peru, Nepal, Malaysia, Ghana, Syria, Australia, Taiwan, Sri Lanka, Mozambique, Cote d’Ivoire, Cameroon, and Chile.

  4. The earliest years for a number of economies are not 1950, but close to 1950. The initial year for those economies are as follows: 1951 (Taiwan, Chile); 1952 (China), 1953 (Republic of Korea); 1955 (Iran, Malaysia, Ghana); 1959 (Bangladesh); and 1960 (Indonesia, Tanzania, Nepal, Syria, Romania, Mozambique, Cote d’Ivoire, Cameroon).

  5. In its simplest form, the human capital index is constructed as \(\hbox {h}=\exp (0.08\,\hbox {s})\), where h is human capital and s is schooling years. Since Mincer regressions suggest that \(\ln \hbox {w}=\hbox {constant}+0.08\,\hbox {s}\), the human capital index is justified if human capital is proportional to wage rate.

  6. Tyler et al. (2000) show the existence of signaling effects of education empirically in a natural experiment. The experiment is that in the United States the criterion of the General Educational Development diploma is different in different states. A person whose scores are good enough to be eligible in Texas may not be given the same diploma if they were in New York. This natural experiment controls a person’s ability, while varies his educational levels exogenously.

  7. It will not change theoretical conclusions if a constant positive population growth is assumed.

  8. Since governments do not make economic decisions in the model, their role is restricted to keeping budget constraints of individual households unchanged.

  9. Notice that the representative firm is the sole firm in the economy, so the aggregate production and cost are the integral of individual production and cost over all workers.

  10. For justification of the sufficient conditions of a PBE, refer to, e.g,. Fudenberg and Tirole (1991), Gibbons (1992), and Laffont and Martimort (2002).

  11. These countries include Costa Rica, Ecuador, Kyrgyz Republic, Mongolia, Namibia, Panama, Tajikistan, Luxembourg, Malaysia, Norway, Cuba, Barbados, Finland, Sweden, Togo, Russia, Portugal, Guyana, Belgium, Denmark, Belize, Greece, Turkey, Estonia, Ireland, Uruguay, Romania, Croatia, Austria, Italy, Lithuania, France, Iceland, Switzerland, El Salvador, Bolivia, Hungary, Czech Republic, Poland, Slovak Republic, Malta, Belarus, Latvia, Moldova, Slovenia, Spain, Mali, Thailand, Germany, Bulgaria, Kuwait, Netherlands, New Zealand, Argentina, Cyprus, Mexico, Israel, United Kingdom, Kazakhstan, Canada, Australia, Paraguay, Japan, United States, Benin, China, Burkina Faso, Kenya, Peru, Colombia, Philippines, Republic of Korea, Guatemala, Chile, Dominican Republic.

  12. Solving this system of nonlinear equations involves a “shooting” algorithm.

  13. In 2003, de la Fuente and Antonio (2003) reviewed the relevant literature. They found that returns to schooling were significant in both the micro- and macro-econometric literature. They also recommended that European governments should moderately increase human capital but restrict subsidies to post-compulsory education.

References

  • Andreoni, J. (1989). Giving with impure altruism: Application to charity and Ricardian equivalence. Journal of Political Economy, 97(6), 1447–1458.

    Article  Google Scholar 

  • Aghion, P., & Bolton, P. (1997). A theory of trickle-down growth and development. Review of Economic Studies, 64(2), 151–172.

    Article  Google Scholar 

  • Benhabib, J., & Spiegel, M. M. (1994). The role of human capital in economic development: evidence from aggregate cross-country data. Journal of Monetary Economics, 34(2), 143–173.

    Article  Google Scholar 

  • Barro, R., & Lee, J.-W. (2001). International data on educational attainment: update and implications. Oxford Economic Papers, 53(3), 541–563.

    Article  Google Scholar 

  • Barro, R., & Lee, J.-W. (2013). A new data set of educational attainment in the world, 1950–2010. Journal of Development Economics, 104(C), 184–198.

    Article  Google Scholar 

  • Becker, G. S. (1975). Human capital: A theoretical and empirical analysis, with special reference to education (2nd ed.). New York: Columbia University Press.

    Google Scholar 

  • Cohen, D., & Soto, M. (2007). Growth and human capital: Good data, good results. Journal of Economic Growth, 12(1), 51–76.

    Article  Google Scholar 

  • de la Fuente, A., & Antonio, C. (2003). Human capital in a global and knowledge-based economy. Working Papers 70, Barcelona Graduate School of Economics.

  • Feenstra, R. C., Robert, I., & Marcel T. (2013). The Next Generation of the Penn World Table, NBER Working Paper 19255.

  • Fudenberg, D., & Tirole, J. (1991). Game theory (1st ed.). Cambridge: MIT Press.

    Google Scholar 

  • Gibbons, R. (1992). Game Theory for Applied Economists. Princeton: Princeton University Press.

    Google Scholar 

  • Glomm, G., Ravikumar, B., & Schiopu, I. C. (2011). The political economy of education funding. In E. A. Hanushek, S. Machin, & L. Woessmann (Eds.), Handbook of the economics of education (Vol. 4, pp. 615–680). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Hall, R. E., & Jones, C. I. (1999). Why do some countries produce so much more output per worker than others? Quarterly Journal of Economics, 114(1), 83–116.

    Article  Google Scholar 

  • Klenow, P., & Rodríguez-Clare, A. (1997). The neoclassical revival in growth economics: Has it gone too far?, NBER Chapters. In NBER Macroeconomics Annual (Vol. 12, pp. 73–114).

  • Krueger, A., & Lindahl, M. (2001). Education for growth: Why and for whom? Journal of Economic Literature, 39(4), 1101–1136.

    Article  Google Scholar 

  • Laffont, J.-J., & Martimort, D. (2002). The theory of incentives: The Principal–Agent model. Princeton: Princeton University Press.

    Google Scholar 

  • Lemieux, T. (2006). The Mincer Equation Thirty Years after Schooling, experience, and earnings. In S. Grossbard Jacob Mincer A Pioneer of Modern Labor Economics, pp. 127–145, Springer.

  • Mincer, J. (1974). Schooling, experience, and earnings. New York: Columbia University Press.

    Google Scholar 

  • Pritchett, L. (2001). Where has all the education gone? World Bank Economic Review, 15(3), 367–391.

    Article  Google Scholar 

  • Pritchett, L. (2006). Does learning to add up add up? The returns to schooling in aggregate data. In E. A. Hanushek & F. Welch (Eds.), Handbook of the economics of education (Vol. 1, pp. 635–695). Amsterdam: North-Holland.

    Google Scholar 

  • Psacharopoulos, G. (1973). Returns to education: An international comparison. Amsterdam: Elsevier.

    Google Scholar 

  • Psacharopoulos, G. (1985). Returns to education: A further international update and implications. Journal of Human Resources, 20(4), 583–604.

    Article  Google Scholar 

  • Psacharopoulos, G. (1994). Returns to investment in education: A global update. World Development, 22(9), 1325–1343.

    Article  Google Scholar 

  • Psacharopoulos, G., & Patrinos, H. A. (2002). Returns to investment in education: A further update. Education Economics, 12(2), 111–134.

    Article  Google Scholar 

  • Soysal, Y. N., & Strang, D. (1989). Construction of the first mass education systems in nineteenth-century Europe. Sociology of Education, 62(4), 277–288.

    Article  Google Scholar 

  • Spence, M. (1973). Job market signaling. Quarterly Journal of Economics, 87(3), 355–374.

    Article  Google Scholar 

  • Temple, J. (2001). Generalizations that aren’t? Evidence on Education and Growth, European Economic Review, 45(4–6), 905–918.

    Article  Google Scholar 

  • Tyler, J. H., Murnane, R., & Willett, J. B. (2000). Estimating the labor market signaling value of the GED. Quarterly Journal of Economics, 115(2), 431–468.

    Article  Google Scholar 

  • World Bank (2012). Education Statistics—Core Indicators.

Download references

Acknowledgments

We would like to express our sincere gratitude to Professor Jeff Nugent, who inspires us on this intellectual challenge. We thank Professor Lee Ohanian, Professor Selo Imrohoroglu, Professor Michael Magill, Professor Caroline Betts, Professor Douglas Joines, Professor Robert Dekle, Professor Wang Min, Professor Zhao Bo, and two anonymous referees for mentoring us, numerous helpful comments and advice. We are particularly indebted to Professor Li Ling for her altruistic encouragement and support. Related codes and data could be requested from the correspondence author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchun Zhao.

Appendices

Appendix 1: Derivations for the Benchmark Model (Perfect Information Case)

Because in the information economics literature, a terminology “type“ contains the meaning of ability of a worker in this paper, in the following derivation in Appendix 1 and 2 I use “type” in place of “ability” appearing in the main text without any change of meaning.

Assume that types, \({\uptheta }\), are uniformly distributed as follows:

$$\begin{aligned} {\uptheta }\left( \hbox {i} \right)= & {} \left( \bar{\uptheta }- \underline{{\uptheta }}\right) \hbox {i}+\underline{\uptheta }\\ \hbox {F}\left( {\uptheta }\right)= & {} \left\{ \begin{array}{ll} 0&{}\quad {\uptheta }<\underline{{\uptheta }}\\ \frac{{\uptheta }-\underline{{\uptheta }}}{\bar{{\uptheta }}- \underline{{\uptheta }}}&{} \quad {\uptheta }\in \left[ \underline{{\uptheta }},\bar{{\uptheta }}\right) \\ 1&{}\quad {{\uptheta }}\ge \bar{{\uptheta }} \end{array} \right. \\ \hbox {f}\left( {\uptheta }\right)= & {} \left\{ \begin{array}{ll} \frac{1}{\bar{{\uptheta }}-\underline{\uptheta }}&{}\quad {\uptheta }\in \left[ \underline{{\uptheta }},\bar{{\uptheta }}\right] \\ 0&{}\quad \hbox {otherwise} \end{array} \right. \\ \hbox {E}\left[ {\uptheta }\right]= & {} \mathop \int \nolimits _0^1 \left( {\bar{{\uptheta }}-\underline{\uptheta }}\right) \hbox {idi}+\underline{\uptheta }=\frac{\bar{{\uptheta }}- \underline{\uptheta }}{2} \end{aligned}$$

Utility:

$$\begin{aligned} \hbox {u}\left( {\hbox {c}_{\mathrm{it}} ,\hbox {b}_{\mathrm{it}} } \right) =\hbox {c}_{\mathrm{it}}^{\upeta } \hbox {b}_{\mathrm{it}}^{1-{\upeta }} \end{aligned}$$

Utility Maximization Problem choice variables are c, b. It is also the decision about consumption and bestow, and made during the adulthood period.

$$\begin{aligned} \max \hbox {u}=\hbox {c}_{\mathrm{it}}^{\upeta } \hbox {b}_{\mathrm{it}}^{1-{\upeta }} \end{aligned}$$

Subject to

$$\begin{aligned} \hbox {c}_{\mathrm{it}} +\hbox {b}_{\mathrm{it}} \le \hbox {m}_{\mathrm{it}} =\hbox {w}_{\mathrm{it}} \hbox {h}_{\mathrm{it}} +\hbox {R}_{\mathrm{t}} \hbox {a}_{\mathrm{it}} \end{aligned}$$

Equilibrium conditions: \(\forall \hbox {i}\)

$$\begin{aligned} \hbox {c}_{\mathrm{it}}= & {} {\upeta } \hbox {m}_{\mathrm{it}} \end{aligned}$$
(17)
$$\begin{aligned} \hbox {b}_{\mathrm{it}}= & {} \left( {1-{\upeta }} \right) \hbox {m}_{\mathrm{it}} \end{aligned}$$
(18)
$$\begin{aligned} \hbox {m}_{\mathrm{it}}= & {} \hbox {w}_{\mathrm{it}} \hbox {h}_{\mathrm{it}} +\hbox {R}_{\mathrm{t}} \hbox {a}_{\mathrm{it}} \end{aligned}$$
(19)

Schooling investment

$$\begin{aligned} \hbox {x}_{\mathrm{it}} =\frac{\hbox {Zh}_{\mathrm{it}+1}^{1+{\upphi } } }{{\uptheta }_{\mathrm{i}} } \end{aligned}$$

Family Income Maximization Problem choice variable is h. It is also the decision about human capital investment and financial assets investment, and made during the childhood period.

$$\begin{aligned} \max \hbox {w}_{\mathrm{it}} \hbox {h}_{\mathrm{it}} +\hbox {R}_{\mathrm{t}} \hbox {a}_{\mathrm{it}} \end{aligned}$$

Subject to

$$\begin{aligned}&\hbox {a}_{\mathrm{it}} +\left( {1-{\uptau }} \right) \hbox {x}_{\mathrm{it}-1} +\hbox {T}_{\mathrm{it}-1} \le \hbox {b}_{\mathrm{it}-1} \end{aligned}$$
(20)
$$\begin{aligned}&\hbox {x}_{\mathrm{it}-1} =\frac{\hbox {Zh}_{\mathrm{it}}^{1+{\upphi } } }{{\uptheta }_{\mathrm{i}} } \end{aligned}$$
(21)

where \(\hbox {T}_{\mathrm{it}} ={\uptau } \hbox {x}_{\mathrm{it}} \).

Equilibrium conditions

$$\begin{aligned} \hbox {w}_{\mathrm{it}}= & {} \frac{\hbox {R}_{\mathrm{t}} \left( {1-{\uptau }} \right) \left( {1+{\upphi } } \right) \hbox {Zh}_{\mathrm{it}}^{\upphi } }{{\uptheta }_{\mathrm{i}} }\nonumber \\ \hbox {b}_{\mathrm{i}0}= & {} \hbox {b}_0 \end{aligned}$$
(22)

Production: \(\forall \hbox {i}\)

$$\begin{aligned} \hbox {y}_{\mathrm{it}} ={\uptheta }_{\mathrm{i}} \hbox {k}_{\mathrm{it}}^{\upalpha } \hbox {h}_{\mathrm{it}}^{1-{\upalpha }} \end{aligned}$$
(23)

Profit Maximization Problem choice variables are h, k. It is also the decision about physical capital investment and employment, made by the representative firm. \(\forall \hbox {t}\)

$$\begin{aligned} \max \mathop \int \nolimits _{\underline{{\uptheta }} }^{\bar{{\uptheta }}} \left[ {\hbox {y}\left( {{\uptheta }_{\mathrm{i}} } \right) -\hbox {w}_{\mathrm{i}} \hbox {h}_{\mathrm{i}} -\hbox {Rk}_{\mathrm{i}} } \right] \hbox {f}\left( {{\uptheta }_{\mathrm{i}} } \right) \hbox {d}{\uptheta }_{\mathrm{i}} \end{aligned}$$

Factor market clearing: \(\forall \hbox {i}\)

$$\begin{aligned} \hbox {R}_{\mathrm{t}}= & {} {\upalpha } {\uptheta }_{\mathrm{i}} \hbox {k}_{\mathrm{it}}^{{\upalpha }-1} \hbox {h}_{\mathrm{it}}^{1-{\upalpha }} \end{aligned}$$
(24)
$$\begin{aligned} \hbox {w}_{\mathrm{it}}= & {} \left( {1-{\upalpha }} \right) {\uptheta }_{\mathrm{i}} \hbox {k}_{\mathrm{it}}^{\upalpha } \hbox {h}_{\mathrm{it}}^{-{\upalpha }} \end{aligned}$$
(25)

Market clearing condition

$$\begin{aligned} \hbox {K}_{\mathrm{t}+1} =\mathop \int \nolimits _0^1 \hbox {k}_{\mathrm{it}+1} \hbox {di}=\mathop \int \nolimits _0^1 \hbox {a}_{\mathrm{it}+1} \hbox {di}=\hbox {A}_{\mathrm{t}+1} \end{aligned}$$
(26)

Ten endogenous variables are c, b, m, a, x, h, y, k, R, w. And we have ten equilibrium conditions are Eqs. (17)–(26) to figure them out.

Derivations

Equations (18)–(20) turn out to be

$$\begin{aligned} \hbox {a}_{\mathrm{it}+1} +\left( {1-{\uptau }} \right) \hbox {x}_{\mathrm{it}} +\hbox {T}_{\mathrm{it}} =\left( {1-{\upeta }} \right) \left[ {\hbox {w}_{\mathrm{it}} \hbox {h}_{\mathrm{it}} +R_t a_{it} } \right] \end{aligned}$$

Aggregate RHS of the above equations:

$$\begin{aligned} \hbox {A}_{\mathrm{t}+1} +\mathop \int \nolimits _0^1 \hbox {x}_{\mathrm{it}} \hbox {di}=\left( {1-{\upeta }} \right) \mathop \int \nolimits _0^1 \hbox {w}_{\mathrm{it}} \hbox {h}_{\mathrm{it}} \hbox {di}+\left( {1-{\upeta }} \right) \hbox {R}_{\mathrm{t}} \hbox {A}_{\mathrm{t}} \end{aligned}$$
(27)

Remember that (24) and (25) turn out to be

$$\begin{aligned} \hbox {w}_{\mathrm{it}} \hbox {h}_{\mathrm{it}} =\frac{1-{\upalpha }}{{\upalpha }}\hbox {R}_{\mathrm{t}} \hbox {k}_{\mathrm{it}} \end{aligned}$$

Hence,

$$\begin{aligned} \mathop \int \nolimits _0^1 \hbox {w}_{\mathrm{it}} \hbox {h}_{\mathrm{it}} \hbox {di}=\frac{1-{\upalpha }}{{\upalpha }}\hbox {R}_{\mathrm{t}} \mathop \int \nolimits _0^1 \hbox {k}_{\mathrm{it}} \hbox {di}=\frac{1-{\upalpha }}{{\upalpha }}\hbox {R}_{\mathrm{t}} \hbox {K}_{\mathrm{t}} \end{aligned}$$
(28)

Remember that (22) turns out to be

$$\begin{aligned} \hbox {w}_{\mathrm{it}} \hbox {h}_{\mathrm{it}} =\frac{\hbox {R}_{\mathrm{t}} \left( {1-{\uptau }} \right) \left( {1+{\upphi } } \right) \hbox {Zh}_{\mathrm{it}}^{1+{\upphi } } }{{\uptheta }_{\mathrm{i}} }=\hbox {R}_{\mathrm{t}} \left( {1-{\uptau }} \right) \left( {1+{\upphi } } \right) \hbox {x}_{\mathrm{it}-1} \end{aligned}$$

Hence, together with (28)

$$\begin{aligned} \mathop \int \nolimits _0^1 \hbox {x}_{\mathrm{it}} \hbox {di}= & {} \frac{1}{\left( {1+{\upphi } } \right) \left( {1-{\uptau }} \right) \hbox {R}_{\mathrm{t}+1} }\frac{1-{\upalpha }}{{\upalpha }}\hbox {R}_{\mathrm{t}+1} \hbox {K}_{\mathrm{t}+1} \nonumber \\= & {} \frac{1-{\upalpha }}{{\upalpha }\left( {1+{\upphi } } \right) \left( {1-{\uptau }} \right) }\hbox {K}_{\mathrm{t}+1} \end{aligned}$$
(29)

Combine Eqs. (26), (27), (28), and (29), and we have,

$$\begin{aligned} \frac{1+{\upalpha }{\upphi } -{\upalpha } {\uptau }\left( {1+{\upphi } } \right) }{{\upalpha }\left( {1+{\upphi } } \right) \left( {1-{\uptau }} \right) }\hbox {K}_{\mathrm{t}+1}= & {} \left[ {\frac{1-{\upeta }}{{\upalpha }}} \right] \hbox {R}_{\mathrm{t}} \hbox {K}_{\mathrm{t}} \Rightarrow \hbox {K}_{\mathrm{t}+1} \nonumber \\= & {} \frac{\left( {1-{\upeta }} \right) \left( {1+{\upphi } } \right) \left( {1-{\uptau }} \right) }{1+{\upalpha }{\upphi } -{\upalpha } {\uptau }\left( {1+{\upphi } } \right) }\hbox {R}_{\mathrm{t}} \hbox {K}_{\mathrm{t}} \end{aligned}$$
(30)

This is the law of motion for K (with one unknown R). Next, we should know the relation between K and R.

Equation (24) turns out to be

$$\begin{aligned} \hbox {R}_{\mathrm{t}}^{\frac{{\upalpha }}{{\upalpha }-1}} ={\upalpha }^{\frac{{\upalpha }}{{\upalpha }-1}}{\uptheta }_{\mathrm{i}}^{\frac{{\upalpha }}{{\upalpha }-1}} \hbox {k}_{\mathrm{it}}^{\upalpha } \hbox {h}_{\mathrm{it}}^{-{\upalpha }} \end{aligned}$$

Combine this equation with Eq. (25), we have

$$\begin{aligned} \hbox {w}_{\mathrm{it}} =\frac{1-{\upalpha }}{{\upalpha }^{\frac{{\upalpha }}{{\upalpha }-1}}}{\uptheta }_{\mathrm{i}}^{\frac{1}{1-{\upalpha }}} \hbox {R}_{\mathrm{t}}^{\frac{{\upalpha }}{{\upalpha }-1}} \end{aligned}$$
(31)

For any \(\hbox {i}\), and for any \(\hbox {t}=1,2,\ldots \)

Equation (22) turns out to be

$$\begin{aligned} \hbox {h}_{\mathrm{it}} =\left[ {\frac{{\uptheta }_{\mathrm{i}} \hbox {w}_{\mathrm{it}} }{\left( {1+{\upphi } } \right) \left( {1-{\uptau }} \right) \hbox {ZR}_{\mathrm{t}} }} \right] ^{\frac{1}{{\phi } }} \end{aligned}$$
(32)

Equations (32) and (21) turn out to be

$$\begin{aligned} \hbox {x}_{\mathrm{it}-1} =\left[ {\frac{{\uptheta }_{\mathrm{i}} }{\hbox {Z}}} \right] ^{\frac{1}{{\phi } }}\left[ {\frac{w_{it} }{\left( {1+{\phi } } \right) \left( {1-\tau } \right) R_t }} \right] ^{\frac{1+{\phi } }{{\phi } }} \end{aligned}$$

Substitute (31) into them, and let \(\hbox {C}=\frac{1-{\upalpha }}{\hbox {Z}\left( {1-{\uptau }} \right) \left( {1+{\upphi } } \right) }{\upalpha }^{\frac{{\upalpha }}{1-{\upalpha }}}\), we have,

$$\begin{aligned} \hbox {h}_{\mathrm{it}}= & {} \hbox {C}^{\frac{1}{{\phi } }}\times {\uptheta }_{\mathrm{i}}^{\frac{2-{\upalpha }}{\left( {1-{\upalpha }} \right) {\upphi } }} \hbox {R}_{\mathrm{t}}^{\frac{-1}{\left( {1-{\upalpha }} \right) {\upphi } }}\nonumber \\ \hbox {x}_{\mathrm{it}-1}= & {} \hbox {Z}\times \hbox {C}^{\frac{1+{\phi } }{{\phi } }}\times {\uptheta }_{\mathrm{i}}^{\frac{{\upphi } +2-{\upalpha }}{\left( {1-{\upalpha }} \right) {\upphi } }} \times \hbox {R}_{\mathrm{t}}^{\frac{-\left( {1+{\upphi } } \right) }{\left( {1-{\upalpha }} \right) {\upphi } }} \end{aligned}$$
(33)

Substitute Eq. (33) into Eq. (24), we have

$$\begin{aligned} \hbox {R}_{\mathrm{t}}= & {} {\upalpha } {\uptheta }_{\mathrm{i}} \hbox {k}_{\mathrm{it}}^{{\upalpha }-1} \left[ {\hbox {C}^{\frac{1}{{\phi } }}\times {\uptheta }_{\mathrm{i}}^{\frac{2-{\upalpha }}{\left( {1-{\upalpha }} \right) {\upphi } }} \hbox {R}_{\mathrm{t}}^{\frac{-1}{\left( {1-{\upalpha }} \right) {\upphi } }} } \right] ^{1-\alpha }\nonumber \\ \hbox {R}_{\mathrm{t}}^{1+\frac{1}{{\upphi } }} \hbox {k}_{\mathrm{it}}^{1-{\upalpha }}= & {} {\upalpha } {\uptheta }_{\mathrm{i}}^{1+\frac{2-{\upalpha }}{{\upphi } }} \hbox {C}^{\frac{1-\alpha }{{\phi } }}\nonumber \\ \hbox {R}_{\mathrm{t}}^{\frac{1+{\upphi } }{\left( {1-{\upalpha }} \right) {\upphi } }} \hbox {K}_{\mathrm{t}}= & {} {\upalpha }^{\frac{1}{1-{\upalpha }}}\hbox {C}^{\frac{1}{{\phi } }}\mathop \int \nolimits _0^1 {\uptheta }_{\mathrm{i}}^{\frac{{\upphi } +2-{\upalpha }}{\left( {1-{\upalpha }} \right) {\upphi } }} \hbox {di} \end{aligned}$$
(34)

Appendix 2: Derivations for Asymmetric Information Cases

Suppose that workers know their types but firms do not. Workers choose human capital investment, and firms observe workers’ human capital levels and pay wages. Specifications are the same as the benchmark, except for the Income Maximization Problem and the Profit Maximization Problem.

Separating equilibrium (SE)

Income Maximization Problem households choose h, according to firms’ wage schedule, w, which is a function of h.

$$\begin{aligned} \max \hbox {w}\left[ {\hbox {h}_{\mathrm{it}} } \right] +\hbox {R}_{\mathrm{t}} \hbox {a}_{\mathrm{it}} \end{aligned}$$

Subject to

$$\begin{aligned}&\hbox {a}_{\mathrm{it}} +\left( {1-{\uptau }} \right) \hbox {x}_{\mathrm{it}-1} +\hbox {T}_{\mathrm{it}-1} \le \hbox {b}_{\mathrm{it}-1} \end{aligned}$$
(35)
$$\begin{aligned}&\hbox {x}_{\mathrm{it}-1} =\frac{\hbox {Zh}_{\mathrm{it}}^{1+{\upphi } } }{{\uptheta }_{\mathrm{i}} } \end{aligned}$$
(36)

where \(\hbox {T}_{\mathrm{it}} ={\uptau } \hbox {x}_{\mathrm{it}} \).

Before showing the equilibrium condition of SE, we first derive an important implication result.

Lemma

Incentive compatibility alone requires \(\frac{\mathrm {dh}}{\mathrm {d}{\uptheta }}>0\).

Proof

\(\forall {\uptheta },\tilde{{\uptheta }} \), and \(\tilde{{\uptheta }} >\theta \)

$$\begin{aligned} \hbox {w}\left[ {\hbox {h}\left( {\uptheta } \right) } \right] -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}\left( {\uptheta } \right) ;{\uptheta }} \right]\ge & {} \hbox {w}\left[ {\hbox {h}\left( {\tilde{{\uptheta }} } \right) } \right] -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}\left( {\tilde{{\uptheta }} } \right) ;{\uptheta }} \right] \\ \hbox {w}\left[ {\hbox {h}\left( {\tilde{{\uptheta }} } \right) } \right] -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}\left( {\tilde{{\uptheta }} } \right) ;\tilde{{\uptheta }} } \right]\ge & {} \hbox {w}\left[ {\hbox {h}\left( {\uptheta } \right) } \right] -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}\left( {\uptheta } \right) ;\tilde{{\uptheta }} } \right] \end{aligned}$$

The above two equations turn out to be:

$$\begin{aligned}&\left[ {\hbox {x}\left[ {\hbox {h}\left( {\tilde{{\uptheta }} } \right) ;{\uptheta }} \right] -\hbox {x}\left[ {\hbox {h}\left( {\uptheta } \right) ;{\uptheta }} \right] } \right] -\left[ {\hbox {x}\left[ {\hbox {h}\left( {\tilde{{\uptheta }} } \right) ;\tilde{{\uptheta }} } \right] -\hbox {x}\left[ {\hbox {h}\left( {\uptheta } \right) ;\tilde{{\uptheta }} } \right] } \right] \ge 0\\&\left( {\frac{1}{{\uptheta }}-\frac{1}{\tilde{{\uptheta }} }} \right) \left( {\left[ {\hbox {h}\left( {\tilde{{\uptheta }} } \right) } \right] ^{1+{\phi } }-\left[ {\hbox {h}\left( {\uptheta } \right) } \right] ^{1+{\phi } }} \right) \ge 0 \end{aligned}$$

Thus, \(\hbox {h}\left( {\tilde{{\uptheta }} } \right) >h\left( {\uptheta } \right) \), or \(\frac{\hbox {dh}}{\hbox {d}{{\uptheta }}}\ge 0\). \(\square \)

Remember that workers can only choose their human capital levels but not their types. Then \(\forall {\uptheta }\)

$$\begin{aligned} \frac{\hbox {dw}}{\hbox {dh}}\left[ {\hbox {h}\left( {\uptheta } \right) } \right] -\hbox {R}\left( {1-{\uptau }} \right) \frac{\partial \hbox {x}}{\partial \hbox {h}}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] =0 \end{aligned}$$

This is the First Order Condition (FOC). And the Second order condition (SOC) is:

$$\begin{aligned} \frac{\hbox {d}^{2}\hbox {w}}{\hbox {dh}^{2}}\left[ {\hbox {h}\left( {\uptheta } \right) } \right] -\hbox {R}\left( {1-{\uptau }} \right) \frac{\partial ^{2}\hbox {x}}{\partial \hbox {h}^{2}}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] \le 0 \end{aligned}$$

Differentiating the FOC by \({\uptheta }\),

$$\begin{aligned} \left[ {\frac{\hbox {d}^{2}\hbox {w}}{\hbox {dh}^{2}}\left[ {\hbox {h}\left( {\uptheta } \right) } \right] -\hbox {R}\left( {1-{\uptau }} \right) \frac{\partial ^{2}\hbox {x}}{\partial \hbox {h}^{2}}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] } \right] \frac{\hbox {dh}}{\hbox {d}{\uptheta }}-\hbox {R}\left( {1-{\uptau }} \right) \frac{\partial ^{2}\hbox {x}}{\partial \hbox {h}\partial {\uptheta }}\left( {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right) =0 \end{aligned}$$

Then the SOC becomes

$$\begin{aligned} \frac{\partial ^{2}\hbox {x}}{\partial \hbox {h}\partial {\uptheta }}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] \le 0 \end{aligned}$$

If the above condition is a strict inequality, then it is the Spence-Mirrlees (single crossing) condition in the principal-agent literature. Economically, it simply says that a more efficient type is also more efficient at the margin.

Define worker’s indirect utility function \(\hbox {U}\left( {\uptheta } \right) =\hbox {w}-\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\). Then the FOC becomes

$$\begin{aligned} \frac{\hbox {dU}}{\hbox {d}{\uptheta }}\left[ {\uptheta } \right] =-\hbox {R}\left( {1-{\uptau }} \right) \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] \end{aligned}$$

And the relevant participation constraint (PC) is \(\forall {\uptheta }\),

$$\begin{aligned} \hbox {U}\left( {\uptheta } \right) \ge \underline{\hbox {U}} \end{aligned}$$

Because \(\frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] <0\), so\(\frac{\hbox {dU}}{\hbox {d}{\uptheta }}\left[ {\uptheta } \right] >0\), and let the reserve price be zero. PC becomes

$$\begin{aligned} \hbox {U}\left( {\underline{{\uptheta }} } \right) \ge \underline{\hbox {U}} =0 \end{aligned}$$

The FOC, SOC, and PC characterize the Income Maximization Problem.

Production function: \(\forall \hbox {i}\)

$$\begin{aligned} \hbox {y}_{\mathrm{it}} ={\uptheta }_{\mathrm{i}} \hbox {k}_{\mathrm{it}}^{\upalpha } \hbox {h}_{\mathrm{it}}^{1-{\upalpha }} \end{aligned}$$
(37)

Profit Maximization Problem \(\forall \hbox {t}\)

$$\begin{aligned} \max \mathop \int \nolimits _{\underline{{\uptheta }} }^{\bar{{\uptheta }}} \left[ {\hbox {y}\left( {{\uptheta }_{\mathrm{i}} } \right) -\hbox {U}_{\mathrm{i}} -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}-\hbox {Rk}_{\mathrm{i}} } \right] \hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right) \end{aligned}$$

Subject to FOC, SOC and PC:

$$\begin{aligned}&\frac{\hbox {dU}}{\hbox {d}{\uptheta }}\left[ {\uptheta } \right] =-\hbox {R}\left( {1-{\uptau }} \right) \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] \nonumber \\&\frac{\partial ^{2}\hbox {x}}{\partial \hbox {h}\partial {\uptheta }}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] \le 0 \end{aligned}$$
(38)
$$\begin{aligned}&\hbox {U}\left( {\underline{{\uptheta }} } \right) =0 \end{aligned}$$
(39)

The FOC can be rewritten as:

$$\begin{aligned} \hbox {U}\left( {\uptheta } \right) =-\hbox {R}\left( {1-{\uptau }} \right) \mathop \int \nolimits _{\underline{{\uptheta }} }^{\uptheta } \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] \hbox {d}{\uptheta } \end{aligned}$$

or

$$\begin{aligned} \hbox {w}\left[ {\hbox {h}\left( {\uptheta } \right) } \right] =\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] -\hbox {R}\left( {1-{\uptau }} \right) \mathop \int \nolimits _{\underline{{\uptheta }} }^{\uptheta } \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] \hbox {d}{\uptheta } \end{aligned}$$
(40)

Then the maximand becomes

$$\begin{aligned}&\max \mathop \int \nolimits _{\underline{{\uptheta }} }^{\bar{{\uptheta }}} \left[ \hbox {y}\left( {{\uptheta }_{\mathrm{i}} } \right) +\hbox {R}\left( {1-{\uptau }} \right) \mathop \int \nolimits _{\underline{{\uptheta }} }^{\uptheta } \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] \hbox {d}{\uptheta }_{\mathrm{i}}\right. \\&\quad \left. -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] -\hbox {Rk}_{\mathrm{i}} \right] \hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right) \end{aligned}$$

Factor market clearing condition w.r.t. physical capital: \(\forall \hbox {i}\)

$$\begin{aligned} \hbox {R}_{\mathrm{t}} ={\upalpha } {\uptheta }_{\mathrm{i}} \hbox {k}_{\mathrm{it}}^{{\upalpha }-1} \hbox {h}_{\mathrm{it}}^{1-{\upalpha }} \end{aligned}$$
(41)

This result is the same as that in the benchmark.

To derive the FOC w.r.t. human capital, we need simplify the integration inside the maximand.

$$\begin{aligned}&\mathop \int \nolimits _{\underline{{\uptheta }} }^{\bar{{\uptheta }}} \left( {\mathop \int \nolimits _{\underline{{\uptheta }} }^{\uptheta } \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] \hbox {d}{\uptheta }_{\mathrm{i}} } \right) \hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right) \\&\quad =\left( {\mathop \int \nolimits _{\underline{{\uptheta }} }^{\bar{{\uptheta }}} \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] \hbox {d}{\uptheta }_{\mathrm{i}} } \right) \hbox {F}\left( {\bar{{\uptheta }}} \right) -\mathop \int \nolimits _{\underline{{\uptheta }} }^{\bar{{\uptheta }}} \hbox {F}\left( {{\uptheta }_{\mathrm{i}} } \right) \hbox {d}\left( {\mathop \int \nolimits _{\underline{{\uptheta }} }^{\uptheta } \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] \hbox {d}{\uptheta }_{\mathrm{i}} } \right) \\&\quad =\mathop \int \nolimits _{\underline{{\uptheta }} }^{\bar{{\uptheta }}} \left[ {1-\hbox {F}\left( {{\uptheta }_{\mathrm{i}} } \right) } \right] \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] \hbox {d}{\uptheta }_{\mathrm{i}} \end{aligned}$$

The maximand becomes

$$\begin{aligned} \max \mathop \int \nolimits _{\underline{{\uptheta }} }^{\bar{{\uptheta }}} \left[ {\hbox {y}\left( {{\uptheta }_{\mathrm{i}} } \right) -\hbox {R}\left( {1-{\uptau }} \right) \left[ {\hbox {x}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] -\frac{1-\hbox {F}\left( {{\uptheta }_{\mathrm{i}} } \right) }{\hbox {f}\left( {{\uptheta }_{\mathrm{i}} } \right) }\frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] } \right] } \right] \hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right) \end{aligned}$$

Factor market clearing condition w.r.t. human capital: \(\forall \hbox {i}\)

$$\begin{aligned} \left( {1-{\upalpha }} \right) {\uptheta }_{\mathrm{i}} \hbox {k}_{\mathrm{it}}^{\upalpha } \hbox {h}_{\mathrm{it}}^{-{\upalpha }} =\hbox {R}_{\mathrm{t}} \left( {1-{\uptau }} \right) \left[ {\frac{\partial \hbox {x}}{\partial \hbox {h}}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] -\frac{1-\hbox {F}\left( {{\uptheta }_{\mathrm{i}} } \right) }{\hbox {f}\left( {{\uptheta }_{\mathrm{i}} } \right) }\frac{\partial ^{2}\hbox {x}}{\partial {\uptheta }\partial \hbox {h}}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] } \right] \end{aligned}$$
(42)

Market clearing condition

$$\begin{aligned} \hbox {K}_{\mathrm{it}+1} =\mathop \int \nolimits _0^1 \hbox {k}_{\mathrm{it}+1} \hbox {di}=\mathop \int \nolimits _0^1 \hbox {a}_{\mathrm{it}+1} \hbox {di}=\hbox {A}_{\mathrm{it}+1} \end{aligned}$$
(43)

Ten endogenous variables: c, b, m, a, x, h, w, R, y, k. Equations (35), (36), (37), (40)–(43) together with three conditions associated with the Utility Maximization Problem:

$$\begin{aligned} \hbox {c}_{\mathrm{it}}= & {} {\upeta } \hbox {m}_{\mathrm{it}} \end{aligned}$$
(44)
$$\begin{aligned} \hbox {b}_{\mathrm{it}}= & {} \left( {1-{\upeta }} \right) \hbox {m}_{\mathrm{it}} \end{aligned}$$
(45)
$$\begin{aligned} \hbox {m}_{\mathrm{it}}= & {} \hbox {w}_{\mathrm{it}} +\hbox {R}_{\mathrm{t}} \hbox {a}_{\mathrm{it}} \end{aligned}$$
(46)

Derivations

Similar to the benchmark, substitute (45) into (35) and aggregate both sides, we have

$$\begin{aligned} \hbox {K}_{\hbox {t}+1} +\mathop \int \nolimits _0^1 \hbox {x}_{\mathrm{it}} \hbox {di}=\left( {1-{\upeta }} \right) \mathop \int \nolimits _0^1 \hbox {w}_{\mathrm{it}} \hbox {di}+\left( {1-{\upeta }} \right) \hbox {R}_{\mathrm{t}} \hbox {K}_{\mathrm{t}} \end{aligned}$$
(47)

First, by the Cobb–Douglas production function,

$$\begin{aligned} \mathop \int \nolimits _0^1 \hbox {w}_{\mathrm{it}} \hbox {di}=\frac{1-{\upalpha }}{{\upalpha }}\mathop \int \nolimits _0^1 \hbox {R}_{\mathrm{t}} \hbox {k}_{\mathrm{it}} \hbox {di}=\frac{1-{\upalpha }}{{\upalpha }}\hbox {R}_{\mathrm{t}} \hbox {K}_{\mathrm{t}} \end{aligned}$$
(48)

Define marginal product of human capital\(\left[ {\hbox {MP}_{\mathrm{h}} } \right] _{\mathrm{it}} =\left( {1-{\upalpha }} \right) {\uptheta }_{\mathrm{i}} \hbox {k}_{\mathrm{it}}^{\upalpha } \hbox {h}_{\mathrm{it}}^{-{\upalpha }} \). Then by (42)

$$\begin{aligned} \left[ {\hbox {MP}_{\mathrm{h}} } \right] _{\mathrm{it}} =\hbox {R}_{\mathrm{t}} \left( {1-{\uptau }} \right) \left( {1+{\upphi } } \right) \hbox {Z}\frac{\bar{{\uptheta }}}{{\uptheta }_{\mathrm{i}}^2 }\hbox {h}_{\mathrm{it}}^{\upphi } \end{aligned}$$

From Eq. (41), we have

$$\begin{aligned} \hbox {R}_{\mathrm{t}}^{\frac{{\upalpha }}{{\upalpha }-1}} ={\upalpha }^{\frac{{\upalpha }}{{\upalpha }-1}}{\uptheta }_{\mathrm{i}}^{\frac{{\upalpha }}{{\upalpha }-1}} \hbox {k}_{\mathrm{it}}^{\upalpha } \hbox {h}_{\mathrm{it}}^{-{\upalpha }} \end{aligned}$$

Substitute the above equation into the definition of marginal product of human capital, we have

$$\begin{aligned} \left[ {\hbox {MP}_{\mathrm{h}} } \right] _{\mathrm{it}} =\frac{1-{\upalpha }}{{\upalpha }^{\frac{{\upalpha }}{{\upalpha }-1}}}{\uptheta }_{\mathrm{i}}^{\frac{1}{1-{\upalpha }}} \hbox {R}_{\mathrm{t}}^{\frac{{\upalpha }}{{\upalpha }-1}} \end{aligned}$$

So combine the above two expressions for MPH, and we have

$$\begin{aligned} \hbox {h}_{\mathrm{it}} =\hbox {C}^{\frac{1}{{\phi } }}\times \bar{{\uptheta }} ^{\frac{-1}{{\phi } }}{\uptheta }_{\mathrm{i}}^{\frac{3-2{\upalpha }}{\left( {1-{\upalpha }} \right) {\upphi } }} \hbox {R}_{\mathrm{t}}^{\frac{-1}{\left( {1-{\upalpha }} \right) {\upphi } }} \end{aligned}$$

where \(\hbox {C}=\frac{1-{\upalpha }}{\hbox {Z}\left( {1-{\uptau }} \right) \left( {1+{\upphi } } \right) }{\upalpha }^{\frac{{\upalpha }}{1-{\upalpha }}}\). And

$$\begin{aligned} \hbox {x}_{\mathrm{it}} =\frac{\hbox {Zh}_{\mathrm{it}+1}^{1+{\upphi } } }{{\uptheta }_{\mathrm{i}} }=\hbox {Z}\times \hbox {C}^{\frac{1+{\phi } }{{\phi } }}\times \bar{{\uptheta }} ^{\frac{-\left( {1+{\phi } } \right) }{{\phi } }}{\uptheta }_{\mathrm{i}}^{\frac{\left( {2-{\upalpha }} \right) {\upphi } +3-2{\upalpha }}{\left( {1-{\upalpha }} \right) {\upphi } }} \times \hbox {R}_{\mathrm{t}+1}^{\frac{-\left( {1+{\upphi } } \right) }{\left( {1-{\upalpha }} \right) {\upphi } }} \end{aligned}$$

Thus

$$\begin{aligned} \mathop \int \nolimits _0^1 \hbox {x}_{\mathrm{it}} \hbox {di}=\hbox {Z}\times \hbox {C}^{\frac{1+{\phi } }{{\phi } }}\times \bar{{\uptheta }} ^{\frac{-\left( {1+{\phi } } \right) }{{\phi } }}\times \hbox {R}_{\mathrm{t}+1}^{\frac{-\left( {1+{\upphi } } \right) }{\left( {1-{\upalpha }} \right) {\upphi } }} \times \mathop \int \nolimits _0^1 {\uptheta }_{\mathrm{i}}^{\frac{\left( {2-{\upalpha }} \right) {\upphi } +3-2{\upalpha }}{\left( {1-{\upalpha }} \right) {\upphi } }} di \end{aligned}$$
(49)

Substitute (48) and (49) into (47)

$$\begin{aligned} \hbox {K}_{\mathrm{t}+1} +\hbox {Z}\times \hbox {C}^{\frac{1+{\phi } }{{\phi } }}\times \bar{{\uptheta }} ^{\frac{-\left( {1+{\phi } } \right) }{{\phi } }}\times \hbox {R}_{\mathrm{t}+1}^{\frac{-\left( {1+{\upphi } } \right) }{\left( {1-{\upalpha }} \right) {\upphi } }} \times \mathop \int \nolimits _0^1 {\uptheta }_{\mathrm{i}}^{\frac{\left( {2-{\upalpha }} \right) {\upphi } +3-2{\upalpha }}{\left( {1-{\upalpha }} \right) {\upphi } }} di=\frac{1-{\upeta }}{{\upalpha }}\hbox {R}_{\mathrm{t}} \hbox {K}_{\mathrm{t}} \end{aligned}$$

Next, we derive the relation between R and K.

$$\begin{aligned} \hbox {R}_{\mathrm{t}}= & {} {\upalpha } {\uptheta }_{\mathrm{i}} \hbox {k}_{\mathrm{it}}^{{\upalpha }-1} \left[ {\hbox {C}^{\frac{1}{{\phi } }}\times \bar{{\uptheta }} ^{\frac{-1}{{\phi } }}{\uptheta }_{\mathrm{i}}^{\frac{3-2{\upalpha }}{\left( {1-{\upalpha }} \right) {\upphi } }} \hbox {R}_{\mathrm{t}}^{\frac{-1}{\left( {1-{\upalpha }} \right) {\upphi } }} } \right] ^{1-\alpha }\nonumber \\ \hbox {R}_{\mathrm{t}}^{1+\frac{1}{{\upphi } }} \hbox {k}_{\mathrm{it}}^{1-{\upalpha }}= & {} {\upalpha }\bar{{\uptheta }} ^{\frac{-\left( {1-\alpha } \right) }{{\phi } }}{\uptheta }_{\mathrm{i}}^{1+\frac{3-2{\upalpha }}{{\upphi } }} \hbox {C}^{\frac{1-\alpha }{{\phi } }}\nonumber \\ \hbox {R}_{\mathrm{t}}^{\frac{1+{\upphi } }{\left( {1-{\upalpha }} \right) {\upphi } }} \hbox {K}_{\mathrm{t}}= & {} {\upalpha }^{\frac{1}{1-{\upalpha }}}\bar{{\uptheta }} ^{\frac{-1}{{\phi } }} \hbox {C}^{\frac{1}{{\phi } }}\mathop \int \nolimits _0^1 {\uptheta }_{\mathrm{i}}^{\frac{{\upphi } +3-2{\upalpha }}{\left( {1-{\upalpha }} \right) {\upphi } }} \hbox {di} \end{aligned}$$
(50)

Pooling Equilibrium (PE)

Suppose that all workers choose the same human capital level \(\hbox {h}^{\mathrm{p}}\). Then for the lowest type, PC is binding:

$$\begin{aligned} \hbox {w}_{\mathrm{t}}^{\mathrm{p}} -\hbox {R}_{\mathrm{t}} \left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}_{\mathrm{t}}^{\mathrm{p}} , \underline{\uptheta }} \right] =0 \end{aligned}$$
(51)

And the Profit Maximization Problem becomes

$$\begin{aligned} \max \mathop \int \nolimits _{\underline{\uptheta }}^{\bar{{\uptheta }}} \left[ {\uptheta }\left[ {\hbox {k}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{{\upalpha }} \left[ {\hbox {h}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{1-\alpha }- \hbox {w}\left[ {\hbox {h}_{\mathrm{t}}^{\mathrm{p}} } \right] -\hbox {R}_{\mathrm{t}} \hbox {k}_{\mathrm{t}}^{\mathrm{p}} \right] \hbox {dF}\left( {\uptheta } \right) \end{aligned}$$

Subject to

$$\begin{aligned} \hbox {w}\left[ {\hbox {h}_{\mathrm{t}}^{\mathrm{p}} } \right] =\hbox {R}_{\mathrm{t}} \left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}_{\mathrm{t}}^{\mathrm{p}} ,\underline{\uptheta }} \right] \end{aligned}$$

FOC

$$\begin{aligned}&\hbox {E}\left[ {\uptheta } \right] {\upalpha }\left[ {\hbox {k}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{{\upalpha }-1}\left[ {\hbox {h}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{1-\alpha }=\hbox {R}_{\mathrm{t}}^{\mathrm{p}} \end{aligned}$$
(52)
$$\begin{aligned}&\hbox {E}\left[ {\uptheta } \right] \left( {1-{\upalpha }} \right) \left[ {\hbox {k}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{{\upalpha }}\left[ {\hbox {h}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{-\alpha }=\left[ {\hbox {MP}_{\mathrm{h}} } \right] _{\mathrm{t}} =\hbox {R}_{\mathrm{t}}^{\mathrm{p}} \left( {1-{\uptau }} \right) \left( {1+{\upphi } } \right) \frac{\hbox {Z}\left[ {\hbox {h}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{{\upphi } }}{\underline{\uptheta }} \end{aligned}$$
(53)

And the law of motion for K is

$$\begin{aligned} \hbox {K}_{\mathrm{t}+1} +\mathop \int \nolimits _0^1 \hbox {x}_{\mathrm{it}} \hbox {di}=\left( {1-{\upeta }} \right) \mathop \int \nolimits _0^1 \hbox {w}_{\mathrm{it}} \hbox {di}+\left( {1-{\upeta }} \right) \hbox {R}_{\mathrm{t}} \hbox {K}_{\mathrm{t}} \end{aligned}$$

Since

$$\begin{aligned} \mathop \int \nolimits _0^1 \hbox {w}_{\mathrm{it}} \hbox {di}= & {} \frac{1-{\upalpha }}{{\upalpha }} \hbox {R}_{\mathrm{t}} \hbox {K}_{\mathrm{t}}\\ \mathop \int \nolimits _0^1 \hbox {x}_{\mathrm{it}} \hbox {di}= & {} \mathop \int \nolimits _{\underline{\uptheta }}^{\bar{{\uptheta }}} \frac{\hbox {Z}\left[ {\hbox {h}_{\mathrm{t}+1}^{\mathrm{p}} } \right] ^{1+{\phi } }}{{\uptheta }_{\mathrm{i}} }\hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right) \\= & {} \frac{\hbox {Z}\left[ {\hbox {h}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{1+{\phi } }}{\underline{\uptheta }}\frac{{\underline{{\uptheta }}}}{{{\bar{\uptheta }} - \underline{{\uptheta }}}}\ln \frac{{{\bar{\uptheta }}}}{{\underline{{\uptheta }}}} \\= & {} \frac{{{\mathrm{w}}\left[ {{\mathrm{h}}_{{\mathrm{t}} + 1}^{\mathrm{P}}} \right] }}{{{{\mathrm{R}}_{{\mathrm{t}} + 1}}\left( {1 - {{\uptau }}} \right) }}\frac{{\underline{{\uptheta }}}}{{{\bar{\uptheta }} - \underline{{\uptheta }} }}\ln \frac{{{\bar{\uptheta }}}}{{\underline{{\uptheta }}}} \\= & {} \frac{{1 - {{\upalpha }}}}{{{\upalpha }}}\frac{{{\mathrm{k}}_{{\mathrm{t}} + 1}^{\mathrm{P}}}}{{1 - {{\uptau }}}}\frac{{\underline{{\uptheta }}}}{{{\bar{\uptheta }} - \underline{{\uptheta }} }}\ln \frac{{{\bar{\uptheta }}}}{{\underline{{\uptheta }}}} = \frac{{1 - {{\upalpha }}}}{{{\upalpha }}}\frac{{{{\mathrm{K}}_{{\mathrm{t}} + 1}}}}{{1 - {{\uptau }}}}\frac{{\underline{{\uptheta }}}}{{{\bar{\uptheta }} - \underline{{\uptheta }} }}\ln \frac{{{\bar{\uptheta }}}}{{\underline{{\uptheta }}}} \end{aligned}$$

Let \(\hbox {b}=\frac{{\underline{{\uptheta }}}}{{{\bar{\uptheta }} - \underline{{\uptheta }}}}\ln \frac{{{\bar{\uptheta }}}}{{\underline{{\uptheta }}}}\). Then

$$\begin{aligned} \hbox {K}_{\mathrm{t}+1} =\frac{\left( {1-{\upeta }} \right) \left( {1-{\uptau }} \right) }{{\upalpha }\left( {1-{\uptau }} \right) +\left( {1-{\upalpha }} \right) \hbox {b}}\hbox {R}_{\mathrm{t}} \hbox {K}_{\mathrm{t}} \end{aligned}$$
(54)

Next we derive the relation between R and K. Remember (52) can be rewritten as:

$$\begin{aligned} \left[ {\hbox {E}\left[ {\uptheta } \right] {\upalpha }} \right] ^{\frac{\alpha }{\alpha -1}}\left[ {\hbox {k}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{{\upalpha }}\left[ {\hbox {h}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{-\alpha }=\left[ {\hbox {R}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{\frac{\alpha }{\alpha -1}} \end{aligned}$$

Combine it with (53), we have

$$\begin{aligned} \left[ {\hbox {MP}_{\mathrm{h}} } \right] _{\mathrm{t}} =\hbox {E}\left[ {\uptheta } \right] ^{\frac{1}{1-\alpha }}\frac{1-\alpha }{\alpha ^{\frac{\alpha }{\alpha -1}}}\left[ {\hbox {R}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{\frac{\alpha }{\alpha -1}} \end{aligned}$$

And

$$\begin{aligned} \hbox {R}_{\mathrm{t}}^{\mathrm{p}} \left( {1-{\uptau }} \right) \left( {1+{\upphi } } \right) \frac{\hbox {Z}\left[ {\hbox {h}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{{\upphi } }}{\underline{\uptheta }} =\left[ {\hbox {R}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{\frac{\alpha }{\alpha -1}}\hbox {E}\left[ {\uptheta } \right] ^{\frac{1}{1-\alpha }}\frac{1-\alpha }{\alpha ^{\frac{\alpha }{\alpha -1}}} \end{aligned}$$

Let \(\hbox {C}=\frac{1-{\upalpha }}{\hbox {Z}\left( {1-{\uptau }} \right) \left( {1+{\upphi } } \right) }{\upalpha }^{\frac{{\upalpha }}{1-{\upalpha }}}\)

Then

$$\begin{aligned} \hbox {h}_{\mathrm{t}}^{\mathrm{P}} =\hbox {C}^{\frac{1}{{\upphi } }}\times \underline{\uptheta } ^{\frac{1}{{\phi } }}\hbox {E}\left[ {\uptheta } \right] ^{\frac{1}{\left( {1-\alpha } \right) {\phi } }}\times \left[ {\hbox {R}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{\frac{1}{\left( {{\upalpha }-1} \right) {\upphi }}} \end{aligned}$$
(55)

Substitute (55) into (52)

$$\begin{aligned} \hbox {E}\left[ {\uptheta } \right] {\upalpha }\left[ {\hbox {k}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{{\upalpha }-1}\left[ {\hbox {C}^{\frac{1}{{\upphi } }}\times \underline{\uptheta }} ^{\frac{1}{{\phi } }}\hbox {E}\left[ {\uptheta } \right] ^{\frac{1}{\left( {1-\alpha } \right) {\phi } }}\times \left[ {\hbox {R}_{\mathrm{t}}^{\mathrm{p}} } \right] ^{\frac{1}{\left( {{\upalpha }-1} \right) {\upphi } }} \right] ^{1-\alpha }=\hbox {R}_{\mathrm{t}}^{\mathrm{p}} \end{aligned}$$

or

$$\begin{aligned} \left[ {\hbox {R}_{\mathrm{t}}^{\mathrm{P}} } \right] ^{\frac{1+{\upphi } }{\left( {1-{\upalpha }} \right) {\upphi } }}\hbox {K}_{\mathrm{t}}^{\mathrm{P}} ={\upalpha }^{\frac{1}{1-{\upalpha }}}\hbox {C}^{\frac{1}{{\phi } }}{\underline{\uptheta }}^{\frac{1}{{\phi } }}\hbox {E}\left[ {\uptheta } \right] ^{\frac{1+{\upphi } }{\left( {1-{\upalpha }} \right) {\upphi } }} \end{aligned}$$
(56)

Hybrid Equilibrium (HE)

Suppose workers are split into two groups: some workers choose a common human capital level\(\hbox {h}^{1}\), the others choose\(\hbox {h}^{2}>\hbox {h}^{1}\). And the associated type threshold is \({\uptheta }^{{*}}\).

Profit Maximization Problem is \(\forall \hbox {t}\)

$$\begin{aligned}&\max \mathop \int \nolimits _{\underline{\uptheta }}^{{\uptheta }^{{*}}} \left[ {\uptheta }_{\mathrm{i}} \left[ {\hbox {k}^{1}} \right] ^{{\upalpha }}\left[ {\hbox {h}^{1}} \right] ^{1-\alpha }-\hbox {w}\left[ {\hbox {h}^{1}} \right] -\hbox {Rk}^{1} \right] \hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right) \\&\quad +\mathop \int \nolimits _{{\uptheta }^{{*}}}^{\bar{{\uptheta }}} \left[ {{\uptheta }_{\mathrm{i}} \left[ {\hbox {k}^{2}} \right] ^{{\upalpha }}\left[ {\hbox {h}^{2}} \right] ^{1-\alpha }-\hbox {w}\left[ {\hbox {h}^{2}} \right] -\hbox {Rk}^{2}} \right] \hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right) \end{aligned}$$

FOC with respect to physical capital:

$$\begin{aligned} \hbox {E}\left[ {{\uptheta }^{1}} \right] {\upalpha }\left[ {\hbox {k}_{\mathrm{t}}^1 } \right] ^{\alpha -1}\left[ {\hbox {h}_{\mathrm{t}}^1 } \right] ^{1-{\upalpha }}= & {} \hbox {R}_{\mathrm{t}} \end{aligned}$$
(57)
$$\begin{aligned} \hbox {E}\left[ {{\uptheta }^{2}} \right] {\upalpha }\left[ {\hbox {k}_{\mathrm{t}}^2 } \right] ^{\alpha -1}\left[ {\hbox {h}_{\mathrm{t}}^2 } \right] ^{1-{\upalpha }}= & {} \hbox {R}_{\mathrm{t}} \end{aligned}$$
(58)

For \({\uptheta }\in \left[ {\underline{\uptheta }} ,{\uptheta }^{{*}} \right] \), the participation constraint requires

$$\begin{aligned} \hbox {w}\left[ {\hbox {h}^{1}} \right] -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}^{1},\underline{\uptheta }} \right] \ge 0 \end{aligned}$$

In equilibrium, it is binding only for the lowest type:

$$\begin{aligned} \hbox {w}\left[ {\hbox {h}^{1}} \right] =\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}^{1},\underline{\uptheta }} \right] \end{aligned}$$
(59)

For \({\uptheta }\in \left[ {{\uptheta }^{{*}},\bar{\uptheta }} \right] \), the incentive compatibility constraint requires

$$\begin{aligned} \hbox {w}\left[ {\hbox {h}^{2}} \right] -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}^{2},{\uptheta }^{{*}}} \right]\ge & {} \hbox {w}\left[ {\hbox {h}^{1}} \right] -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}^{1},{\uptheta }^{{*}}} \right] \\= & {} \hbox {R}\left( {1-{\uptau }} \right) \left[ {\hbox {x}\left[ {\hbox {h}^{1},\underline{\uptheta }} \right] -\hbox {x}\left[ {\hbox {h}^{1},{\uptheta }^{{*}}} \right] } \right] \end{aligned}$$

In equilibrium, it is binding only for the threshold type:

$$\begin{aligned} \hbox {w}\left[ {\hbox {h}^{2}} \right] =\hbox {R}\left( {1-{\uptau }} \right) \left[ {\hbox {x}\left[ {\hbox {h}^{2},{\uptheta }^{{*}}} \right] +\hbox {x}\left[ {\hbox {h}^{1},\underline{\uptheta }} \right] -\hbox {x}\left[ {\hbox {h}^{1},{\uptheta }^{{*}}} \right] } \right] \end{aligned}$$
(60)

Now the maximand turns out to be

$$\begin{aligned}&\max \hbox {E}\left[ {{\uptheta }^{1}} \right] \left[ {\hbox {k}^{1}} \right] ^{{\upalpha }}\left[ {\hbox {h}^{1}} \right] ^{1-\alpha }-\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}^{1},\underline{\uptheta }} \right] \hbox {F}\left( {{\uptheta }^{{*}}} \right) +\hbox {E}\left[ {{\uptheta }^{2}} \right] \left[ {\hbox {k}^{2}} \right] ^{{\upalpha }}\left[ {\hbox {h}^{2}} \right] ^{1-\alpha }\\&\quad -\hbox {R}\left( {1-{\uptau }} \right) \left[ {\hbox {x}\left[ {\hbox {h}^{2},{\uptheta }^{{*}}} \right] +\hbox {x}\left[ {\hbox {h}^{1},\underline{\uptheta }} \right] -\hbox {x}\left[ {\hbox {h}^{1},{\uptheta }^{{*}}} \right] } \right] \left[ {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right] \end{aligned}$$

FOC with respect to human capital:

$$\begin{aligned}&\hbox {E}\left[ {{\uptheta }^{1}} \right] \left( {1-{\upalpha }} \right) \left[ {\hbox {k}^{1}} \right] ^{{\upalpha }}\left[ {\hbox {h}^{1}} \right] ^{-\alpha }\nonumber \\&\quad =\hbox {R}\left( {1-{\uptau }} \right) \left[ {\frac{\partial \hbox {x}}{\partial \hbox {h}^{1}}\left[ {\hbox {h}^{1},\underline{\uptheta }} \right] -\frac{\partial \hbox {x}}{\partial \hbox {h}^{1}}\left[ {\hbox {h}^{1},{\uptheta }^{{*}}} \right] \left[ {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right] } \right] \end{aligned}$$
(61)
$$\begin{aligned}&\hbox {E}\left[ {{\uptheta }^{2}} \right] \left( {1-{\upalpha }} \right) \left[ {\hbox {k}^{2}} \right] ^{{\upalpha }}\left[ {\hbox {h}^{2}} \right] ^{-\alpha }\nonumber \\&\quad =\hbox {R}\left( {1-{\uptau }} \right) \frac{\partial \hbox {x}}{\partial \hbox {h}^{2}}\left[ {\hbox {h}^{2},{\uptheta }^{{*}}} \right] \left[ {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right] \end{aligned}$$
(62)

Derivations

Similar to the benchmark, we have

$$\begin{aligned} \mathop \int \nolimits _0^1 \left[ {\hbox {a}_{\mathrm{it}+1} +\left( {1-{\uptau }} \right) \hbox {x}_{\mathrm{it}} +\hbox {T}_{\mathrm{it}} } \right] \hbox {di}=\left( {1-{\upeta }} \right) \mathop \int \nolimits _0^1 \left( {\hbox {w}\left[ {\hbox {h}_{\mathrm{it}} } \right] +\hbox {R}_{\mathrm{t}} \hbox {a}_{\mathrm{it}} } \right) \hbox {di}\nonumber \\ \hbox {K}_{\mathrm{t}+1} +\mathop \int \nolimits _{\underline{\uptheta }} ^{{\uptheta }^{{*}}} \hbox {x}\left[ {\hbox {h}_{\mathrm{t}+1}^1 ,{\uptheta }} \right] \hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right) +\mathop \int \nolimits _{{\uptheta }^{{*}}}^{\bar{{\uptheta }}} \hbox {x}\left[ {\hbox {h}_{\mathrm{t}+1}^2 ,{\uptheta }} \right] \hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right) =\frac{1-{\upeta }}{{\upalpha }}\hbox {R}_{\mathrm{t}} \hbox {K}_{\mathrm{t}} \end{aligned}$$
(63)

And we are able to integrate two integrals in (63).

$$\begin{aligned} \hbox {I}_1= & {} \mathop \int \nolimits _{\underline{\uptheta }} ^{{\uptheta }^{{*}}} \hbox {x}\left[ {\hbox {h}_{\mathrm{t}+1}^1 ,{\uptheta }} \right] \hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right) =\mathop \int \nolimits _{\underline{\uptheta }} ^{{\uptheta }^{{*}}} \frac{\hbox {Z}\left[ {\hbox {h}_{\mathrm{t}+1}^1 } \right] ^{1+{\phi } }}{{\uptheta }_{\mathrm{i}} }\hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right) =\frac{\hbox {Z}\left[ {\hbox {h}_{\mathrm{t}+1}^1 } \right] ^{1+{\phi } }}{\underline{\uptheta }} \frac{\underline{\uptheta }}{{\bar{{\uptheta }}-\underline{\uptheta }}}\hbox {ln}\frac{\uptheta ^{*}}{\underline{\uptheta }}\\= & {} \frac{{\hbox {w}}{[\hbox {h}_{\mathrm{t}+1}^{1}]}}{\hbox {R}_{\hbox {t}+1}(1-\uptau )} \frac{\underline{\uptheta }}{\bar{\uptheta }-\underline{\uptheta }}\hbox {ln}\frac{\uptheta ^{*}}{\underline{\uptheta }}= {\frac{1-\upalpha }{\upalpha }}\frac{\hbox {k}_{\mathrm{t}+1}^{1}}{1-\uptau } \frac{\underline{\uptheta }}{\bar{\uptheta }-\underline{\uptheta }} \hbox {ln}\frac{\uptheta ^{*}}{\underline{\uptheta }} \end{aligned}$$

The fourth equality comes from (59), and the fifth equality comes from (57).

$$\begin{aligned} {{\mathrm{I}}_2}= & {} \mathop \int \nolimits _{{{{\uptheta }}^{{*}}}}^{{\bar{\uptheta }}} {\mathrm{x}}\left[ {{{\mathrm{h}}^2},{{\uptheta }}} \right] {\mathrm{dF}}\left( {{{{\uptheta }}_{\mathrm{i}}}} \right) = \mathop \int \nolimits _{{{{\uptheta }}^{{*}}}}^{{\bar{\uptheta }}} \frac{{{\mathrm{Z}}{{\left[ {{{\mathrm{h}}^2}} \right] }^{1 + \phi }}}}{{{{{\uptheta }}_{\mathrm{i}}}}}{\mathrm{dF}}\left( {{{{\uptheta }}_{\mathrm{i}}}} \right) = \frac{{{\mathrm{Z}}{{\left[ {{{\mathrm{h}}^2}} \right] }^{1 + \phi }}}}{{{\bar{\uptheta }} - \underline{{\uptheta }} }}\ln \frac{{{\bar{\uptheta }}}}{{{{{\uptheta }}^{{*}}}}}\\= & {} \left[ {\frac{{{\mathrm{w}}\left[ {{\mathrm{h}}_{{\mathrm{t}} + 1}^2} \right] }}{{{{\mathrm{R}}_{{\mathrm{t}} + 1}}\left( {1 - {{\uptau }}} \right) }} - \frac{{{\mathrm{w}}\left[ {{\mathrm{h}}_{{\mathrm{t}} + 1}^1} \right] }}{{{{\mathrm{R}}_{{\mathrm{t}} + 1}}\left( {1 - {{\uptau }}} \right) }}\frac{{{{{\uptheta }}^{{*}}} - \underline{{\uptheta }} }}{{{{{\uptheta }}^{{*}}}}}} \right] \frac{{{{{\uptheta }}^{{*}}}}}{{{\bar{\uptheta }} - \underline{{\uptheta }} }}\ln \frac{{{\bar{\uptheta }}}}{{{{{\uptheta }}^{{*}}}}} \\= & {} \frac{{1 - {{\upalpha }}}}{{{{\upalpha }}\left( {1 - {{\uptau }}} \right) }}\left[ {{\mathrm{k}}_{{\mathrm{t}} + 1}^2 - {\mathrm{k}}_{{\mathrm{t}} + 1}^1\frac{{{{{\uptheta }}^{{*}}} - \underline{{\uptheta }} }}{{{{{\uptheta }}^{{*}}}}}} \right] \frac{{{{{\uptheta }}^{{*}}}}}{{{\bar{\uptheta }} - \underline{{\uptheta }} }}\ln \frac{{{\bar{\uptheta }}}}{{{{{\uptheta }}^{{*}}}}} \end{aligned}$$

The fourth equality comes from (59) and (60), and the fifth equality comes from (57) and (58).

Now we derive the relation between K1 and K2. By Eqs. (57) and (58)

$$\begin{aligned} \hbox {k}^{2}=\hbox {k}^{1}\frac{\hbox {h}^{2}}{\hbox {h}^{1}}\left( {\frac{\hbox {E}\left[ {{\uptheta }^{2}} \right] }{\hbox {E}\left[ {{\uptheta }^{1}} \right] }} \right) ^{\frac{1}{1-\alpha }} \end{aligned}$$

Define marginal product of human capital. Then Eqs. (61) and (62) become

$$\begin{aligned} \hbox {MP}_{\mathrm{h}}^1= & {} \hbox {R}\left( {1-{\uptau }} \right) \hbox {Z}\left( {1+{\upphi } } \right) \left[ {\hbox {h}^{1}} \right] ^{{\upphi } }\left[ {\frac{1}{\underline{\uptheta }} }-\frac{1}{{\uptheta }^{{*}}}\left[ {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right] \right] \end{aligned}$$
(64)
$$\begin{aligned} \hbox {MP}_{\mathrm{h}}^2= & {} \hbox {R}\left( {1-{\uptau }} \right) \hbox {Z}\left( {1+{\upphi } } \right) \left[ {\hbox {h}^{2}} \right] ^{{\upphi } }\frac{\left[ {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right] }{{\uptheta }^{{*}}} \end{aligned}$$
(65)

Use the definitions of MPK and MPH and some algebraic manipulation, we have

$$\begin{aligned} \left[ {\hbox {MP}_{\mathrm{h}}^1 } \right] _{\mathrm{t}}= & {} \hbox {E}\left[ {{\uptheta }^{1}} \right] ^{\frac{1}{1-\alpha }}\frac{1-{\upalpha }}{{\upalpha }^{\frac{{\upalpha }}{{\upalpha }-1}}}\hbox {R}_{\mathrm{t}}^{\frac{{\upalpha }}{{\upalpha }-1}} \end{aligned}$$
(66)
$$\begin{aligned} \left[ {\hbox {MP}_{\mathrm{h}}^2 } \right] _{\mathrm{t}}= & {} \hbox {E}\left[ {{\uptheta }^{2}} \right] ^{\frac{1}{1-\alpha }}\frac{1-{\upalpha }}{{\upalpha }^{\frac{{\upalpha }}{{\upalpha }-1}}}\hbox {R}_{\mathrm{t}}^{\frac{{\upalpha }}{{\upalpha }-1}} \end{aligned}$$
(67)

Then (64), (65), (66) and (67) give

$$\begin{aligned} \frac{\hbox {h}^{2}}{\hbox {h}^{1}}=\left[ {\frac{\hbox {E}\left[ {{\uptheta }^{2}} \right] }{\hbox {E}\left[ {{\uptheta }^{1}} \right] }} \right] ^{\frac{1}{\left( {1-\alpha } \right) {\phi } }}\left[ {\frac{\theta ^{*}}{\underline{\theta } \left[ {1-F\left( {\theta ^{*}} \right) } \right] }-1} \right] ^{\frac{1}{{\phi } }} \end{aligned}$$

so

$$\begin{aligned} \hbox {k}^{2}=\hbox {k}^{1}\left( {\frac{\hbox {E}\left[ {{\uptheta }^{2}} \right] }{\hbox {E}\left[ {{\uptheta }^{1}} \right] }} \right) ^{\frac{1}{1-\alpha }\left( {1+\frac{1}{{\phi } }} \right) }\left[ {\frac{\theta ^{*}}{\underline{\theta } \left[ {1-F\left( {\theta ^{*}} \right) } \right] }-1} \right] ^{1/{\phi } }=\hbox {CC}\times \hbox {k}^{1} \end{aligned}$$
(68)

where \(\hbox {CC}=\left( {\frac{\hbox {E}\left[ {{\uptheta }^{2}} \right] }{\hbox {E}\left[ {{\uptheta }^{1}} \right] }} \right) ^{\frac{1}{1-\alpha }\left( {1+\frac{1}{{\phi } }} \right) }\left[ {\frac{\theta ^{*}}{\underline{\theta } \left[ {1-F\left( {\theta ^{*}} \right) } \right] }-1} \right] ^{1/{\phi } }\)

By definition, \(\hbox {F}\left( {{\uptheta }^{{*}}} \right) \hbox {k}^{1}+\left[ {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right] \hbox {k}^{2}=\hbox {k}=\hbox {K}.\) So

$$\begin{aligned} \hbox {k}^{1}= & {} \frac{\hbox {K}}{\hbox {F}\left( {{\uptheta }^{{*}}} \right) +\hbox {CC}\left( {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right) } \end{aligned}$$
(69)
$$\begin{aligned} \hbox {k}^{2}= & {} \frac{\hbox {CC}\times \hbox {K}}{\hbox {F}\left( {{\uptheta }^{{*}}} \right) +\hbox {CC}\left( {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right) } \end{aligned}$$
(70)

Now substitute (69) and (70) into the two integrals in (63). It is the law of motion between K (t+1), K (t) and R (t).

Finally, we derive the relation between R(t) and K(t). Remember that R (t) equals MPK (t).

$$\begin{aligned} \hbox {E}\left[ {{\uptheta }^{1}} \right] {\upalpha }\left[ {\hbox {k}_{\mathrm{t}}^1 } \right] ^{\alpha -1}\left[ {\hbox {h}_{\mathrm{t}}^1 } \right] ^{1-{\upalpha }}=\hbox {R}_{\mathrm{t}} \end{aligned}$$

And MPH1 connects Eqs. (64) and (66)

$$\begin{aligned} \frac{1-{\upalpha }}{{\upalpha }^{\frac{{\upalpha }}{{\upalpha }-1}}}\hbox {E}\left[ {{\uptheta }^{1}} \right] ^{\frac{1}{1-\alpha }}\hbox {R}^{\frac{{\upalpha }}{{\upalpha }-1}}=\hbox {R}\left( {1-{\uptau }} \right) \hbox {Z}\left( {1+{\upphi } } \right) \left[ {\hbox {h}^{1}} \right] ^{{\upphi } }\left[ {\frac{1}{\underline{\uptheta }} }-\frac{1}{{\uptheta }^{{*}}}\left[ {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right] \right] \end{aligned}$$

Let \(\hbox {C}=\frac{1-{\upalpha }}{\hbox {Z}\left( {1-{\uptau }} \right) \left( {1+{\upphi } } \right) }{\upalpha }^{\frac{{\upalpha }}{1-{\upalpha }}}\). Then

$$\begin{aligned} \hbox {h}_{\mathrm{t}}^1 =\hbox {C}^{\frac{1}{{\upphi } }}\times \left[ {\frac{1}{\underline{\uptheta }} }-\frac{1}{{\uptheta }^{{*}}}\left[ {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right] \right] ^{\frac{-1}{{\phi } }}\hbox {E}\left[ {{\uptheta }^{1}} \right] ^{\frac{1}{\left( {1-\alpha } \right) {\upphi } }}\times \left[ {\hbox {R}_{\mathrm{t}} } \right] ^{\frac{1}{\left( {{\upalpha }-1} \right) {\upphi } }} \end{aligned}$$
(71)

Similarly,

$$\begin{aligned} \hbox {h}_{\mathrm{t}}^2 =\hbox {C}^{\frac{1}{{\upphi } }}\times \left[ {\frac{{\uptheta }^{{*}}}{1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) }} \right] ^{\frac{1}{{\phi } }}\hbox {E}\left[ {{\uptheta }^{2}} \right] ^{\frac{1}{\left( {1-\alpha } \right) {\phi } }}\times \left[ {\hbox {R}_{\mathrm{t}} } \right] ^{\frac{1}{\left( {{\upalpha }-1} \right) {\upphi } }} \end{aligned}$$

Substitute (71) into (57)

$$\begin{aligned} \hbox {E}\left[ {{\uptheta }^{1}} \right] {\upalpha }\left[ {\hbox {k}_{\mathrm{t}}^1 } \right] ^{\alpha -1}\left( {\hbox {C}^{\frac{1}{{\upphi } }}\times \left[ {\frac{1}{\underline{\uptheta }} }-\frac{1}{{\uptheta }^{{*}}}\left[ {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right] \right] ^{\frac{-1}{{\phi } }}\hbox {E}\left[ {{\uptheta }^{1}} \right] ^{\frac{1}{\left( {1-\alpha } \right) {\phi } }}\times \left[ {\hbox {R}_{\mathrm{t}} } \right] ^{\frac{1}{\left( {{\upalpha }-1} \right) {\upphi } }}} \right) ^{1-{\upalpha }}=\hbox {R}_{\mathrm{t}} \end{aligned}$$

Then

$$\begin{aligned} \left[ {\hbox {R}_{\mathrm{t}} } \right] ^{\frac{1+{\phi } }{\left( {1-\alpha } \right) {\phi } }}\hbox {K}_{\mathrm{t}}= & {} \left[ {\hbox {F}\left( {{\uptheta }^{{*}}} \right) +\hbox {CC}\left( {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right) } \right] {\upalpha }^{\frac{1}{1-{\upalpha }}}C^{\frac{1}{{\phi } }}\nonumber \\&\quad \times \left[ {\frac{1}{\underline{\uptheta }} }-\frac{1}{{\uptheta }^{{*}}}\left[ {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right] \right] ^{\frac{-1}{{\phi } }}\hbox {E}\left[ {{\uptheta }^{1}} \right] ^{\frac{1+{\phi } }{\left( {1-\alpha } \right) {\phi } }} \end{aligned}$$
(72)

or

$$\begin{aligned} \left[ {\hbox {R}_{\mathrm{t}} } \right] ^{\frac{1+{\phi } }{\left( {1-\alpha } \right) {\phi } }}\hbox {K}_{\mathrm{t}} =\frac{\left[ {\hbox {F}\left( {{\uptheta }^{{*}}} \right) +\hbox {CC}\left( {1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) } \right) } \right] }{\hbox {CC}}{\upalpha }^{\frac{1}{1-{\upalpha }}}\left[ {\hbox {C}\times \frac{{\uptheta }^{{*}}}{1-\hbox {F}\left( {{\uptheta }^{{*}}} \right) }} \right] ^{\frac{1}{{\phi } }}\hbox {E}\left[ {{\uptheta }^{2}} \right] ^{\frac{1+{\phi } }{\left( {1-\alpha } \right) {\phi } }} \end{aligned}$$

Appendix: Proof of the Lemma

Lemma

Incentive compatibility alone requires \(\frac{\mathrm {dh}}{\mathrm {d}{\uptheta }}>0\).

Proof

\(\forall {\uptheta },\tilde{\uptheta } ,\) and \(\tilde{\uptheta } >\theta \), incentive compatibility implies,

$$\begin{aligned} \hbox {w}\left[ {\hbox {h}\left( {\uptheta } \right) } \right] -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}\left( {\uptheta } \right) ;{\uptheta }} \right]\ge & {} \hbox {w}\left[ {\hbox {h}\left( {\tilde{\uptheta } } \right) } \right] -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}\left( {\tilde{\uptheta } } \right) ;{\uptheta }} \right] \\ \hbox {w}\left[ {\hbox {h}\left( {\tilde{\uptheta } } \right) } \right] -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}\left( {\tilde{\uptheta } } \right) ;\tilde{\uptheta } } \right]\ge & {} \hbox {w}\left[ {\hbox {h}\left( {\uptheta } \right) } \right] -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}\left( {\uptheta } \right) ;\tilde{\uptheta } } \right] \end{aligned}$$

The above two equations turn out to be,

$$\begin{aligned}&\left[ {\hbox {x}\left[ {\hbox {h}\left( {\tilde{\uptheta } } \right) ;{\uptheta }} \right] -\hbox {x}\left[ {\hbox {h}\left( {\uptheta } \right) ;{\uptheta }} \right] } \right] -\left[ {\hbox {x}\left[ {\hbox {h}\left( {\tilde{\uptheta } } \right) ;\tilde{\uptheta } } \right] -\hbox {x}\left[ {\hbox {h}\left( {\uptheta } \right) ;\tilde{\uptheta } } \right] } \right] \ge 0\\&\left( {\frac{1}{{\uptheta }}-\frac{1}{\tilde{\uptheta } }} \right) \left( {\left[ {\hbox {h}\left( {\tilde{\uptheta } } \right) } \right] ^{1+{\phi } }-\left[ {\hbox {h}\left( {\uptheta } \right) } \right] ^{1+{\phi } }} \right) \ge 0 \end{aligned}$$

Thus, \(\hbox {h}\left( {\tilde{\uptheta } } \right) >h\left( {\uptheta } \right) \), or \(\frac{\hbox {dh}}{\hbox {d}{\uptheta }}\ge 0\) . \(\square \)

Derivation of Eq. (67)

First rewrite the first order condition as,

$$\begin{aligned} \frac{\hbox {dU}}{\hbox {d}{\uptheta }}\left[ {\uptheta } \right] =-\hbox {R}\left( {1-{\uptau }} \right) \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] \end{aligned}$$

In addition, the associated participation constraint is \(\forall {\uptheta }\),

$$\begin{aligned} \hbox {U}\left( {\uptheta } \right) \ge \underline{\hbox {U}} \end{aligned}$$

where \(\underline{\hbox {U}} \) is the reserve utility. Because \(\frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] <0\), so \(\frac{\hbox {dU}}{\hbox {d}{\uptheta }}\left[ {\uptheta } \right] >0\). Let the reserve utility be zero. Then the participation condition becomes,

$$\begin{aligned} \hbox {U}\left( {\underline{\uptheta }} \right) \ge \underline{\hbox {U}} =0 \end{aligned}$$

The first order condition, second order condition, and participation condition fully characterize the income maximization problem.

Then integrate both sides of the first order condition and take advantage of that \(\hbox {U}\left( {\underline{\uptheta }} \right) =0\),

$$\begin{aligned} \hbox {U}\left( {\uptheta } \right) =-\hbox {R}\left( {1-{\uptau }} \right) \mathop \int \nolimits _{\underline{\uptheta }} ^{\uptheta } \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {\uptheta } \right) ,{\uptheta }} \right] \hbox {d}{\uptheta } \end{aligned}$$

Substitute the above expression into the maximand of firms’ problem,

$$\begin{aligned}&\max \mathop \int \nolimits _{\underline{\uptheta }} ^{\bar{{\uptheta }}} \left[ {\hbox {y}\left( {{\uptheta }_{\mathrm{i}} } \right) +\hbox {R}\left( {1-{\uptau }} \right) \mathop \int \nolimits _{\underline{\uptheta }}}^{\uptheta } \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] \hbox {d}{\uptheta }_{\mathrm{i}}\right. \\&\quad \left. -\hbox {R}\left( {1-{\uptau }} \right) \hbox {x}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] -\hbox {Rk}_{\mathrm{i}} \right] \hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right) \end{aligned}$$

The first order condition with respect to physical capital is, \(\forall \hbox {i}\)

$$\begin{aligned} \hbox {R}_{\mathrm{t}} ={\upalpha } {\uptheta }_{\mathrm{i}} \hbox {k}_{\mathrm{it}}^{{\upalpha }-1} \hbox {h}_{\mathrm{it}}^{1-{\upalpha }} \end{aligned}$$

which is the same as Eq. (65).

To derive the first order condition with respect to human capital, a few more algebraic manipulations are needed. Consider the integral inside the maximand, and integrate it by parts,

$$\begin{aligned} \mathop \int \nolimits _{\underline{\uptheta }} ^{\bar{{\uptheta }}} \left( {\mathop \int \nolimits _{\underline{\uptheta }} }^{\uptheta } \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] \hbox {d}{\uptheta }_{\mathrm{i}} \right) \hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right)= & {} \left( {\mathop \int \nolimits _{\underline{\uptheta }} }^{\bar{{\uptheta }}} \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] \hbox {d}{\uptheta }_{\mathrm{i}} \right) \hbox {F}\left( {\bar{{\uptheta }}} \right) \\&-\mathop \int \nolimits _{\underline{\uptheta }} ^{\bar{{\uptheta }}} \hbox {F}\left( {{\uptheta }_{\mathrm{i}} } \right) \hbox {d}\left( {\mathop \int \nolimits _{\underline{\uptheta }} }^{\uptheta } \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] \hbox {d}{\uptheta }_{\mathrm{i}} \right) \\= & {} \mathop \int \nolimits _{\underline{\uptheta }} ^{\bar{{\uptheta }}} \left[ {1-\hbox {F}\left( {{\uptheta }_{\mathrm{i}} } \right) } \right] \frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] \hbox {d}{\uptheta }_{\mathrm{i}} \end{aligned}$$

Substitute it into the maximand,

$$\begin{aligned} \max \mathop \int \nolimits _{\underline{\uptheta }} ^{\bar{{\uptheta }}} \left[ {\hbox {y}\left( {{\uptheta }_{\mathrm{i}} } \right) -\hbox {R}\left( {1-{\uptau }} \right) \left[ {\hbox {x}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] -\frac{1-\hbox {F}\left( {{\uptheta }_{\mathrm{i}} } \right) }{\hbox {f}\left( {{\uptheta }_{\mathrm{i}} } \right) }\frac{\partial \hbox {x}}{\partial {\uptheta }}\left[ {\hbox {h}\left( {{\uptheta }_{\mathrm{i}} } \right) ,{\uptheta }_{\mathrm{i}} } \right] } \right] } \right] \hbox {dF}\left( {{\uptheta }_{\mathrm{i}} } \right) \end{aligned}$$

And we get Eq. (67) in the text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Liu, Y. Where has All the Education Gone? Everywhere But into Growth. Comput Econ 51, 35–74 (2018). https://doi.org/10.1007/s10614-016-9629-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-016-9629-5

Keywords

JEL Classification

Navigation