Skip to main content
Log in

Constrained global optimization for wine blending

  • Application
  • Published:
Constraints Aims and scope Submit manuscript

Abstract

Assemblage consists in blending base wines in order to create target wines. Recent developments in aroma analysis allow us to measure chemical compounds impacting the taste of wines. This chemical analysis makes it possible to design a decision tool for the following problem: given a set of target wines, determine which volumes must be extracted from each base wine to produce wines that satisfy constraints on aroma concentration, volumes, alcohol contents and price. This paper describes the modeling of wine assemblage as a mixed constrained optimization problem, where the main goal is to minimize the gap to the desired concentrations for every aromatic criterion. The deterministic branch and bound solvers Couenne and IbexOpt behave well on the wine blending problem thanks to their interval constraint propagation/programming and polyhedral relaxation methods. We also study the performance of other optimization goals that could be embedded in a configuration tool, where the different possible interactions amount to solving the same constraints with different objective functions. We finally show on a recent generic wine blending instance that the proposed optimization process scales up well with the number of base wines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Inverse operations of abs and max must be implemented for the constraint propagation (second phase of HC4-Revise [6]) and generalized gradients must be developed for the polyhedral relaxation.

  2. ε o b j -minimize f(X,Y) means minimize f(X,Y) with a precision ε o b j on the objective, i.e. find (X,Y) such that for all Z 1, Z 2 we have f(Z 1,Z 2)≥f(X,Y)−ε o b j .

  3. Another interval constraint programming operator, called 3B in [17, 23], is available in both solvers but is counterproductive in this application. It is based on a refutation reasoning that removes a sub-interval at a bound of a given domain if HC4 can prove that the corresponding sub-problem contains no solution.

  4. Wineblending1, Wineblending2, Wineblending1+2 and the six Wineblending3 instances can be downloaded from the web page of the first author.

References

  1. IBM ILOG CPLEX (2015). Optimization studio v12.6.0 documentation.

  2. Araya, I., Trombettoni, G., & Neveu, B. (2012). A contractor based on convex interval taylor. In Proceedings CPAIOR, pp. 1–16. LNCS 7298.

  3. Araya, I., Trombettoni, G., Neveu, B., & Chabert, G. (2014). Upper bounding in inner regions for global optimization under inequality constraints. J. Global Optimization (JOGO), 60(2), 145–164.

    Article  MathSciNet  MATH  Google Scholar 

  4. Belotti, P. (2013). Couenne a user’s manual. www.coin-or.org/Couenne/.

  5. Belotti, P., Lee, J., Liberti, L., Margot, F., & Wächter, A. (2009). Branch and bounds tightening techniques for non-convex MINLP. Optimization Methods and Software, 24(4–5), 597–634.

    Article  MathSciNet  MATH  Google Scholar 

  6. Benhamou, F., Goualard, F., Granvilliers, L., & Puget, J.F. (1999). Revising Hull and Box Consistency. In Proceedings ICLP, pp. 230–244.

  7. Bouveret, S., & Lemaitre, M. (2009). Computing leximin-optimal solutions in constraint networks. Artificial Intelligence J, 173, 343–364.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chabert, G. (2013). Interval-Based EXplorer. www.ibex-lib.org.

  9. Chabert, G., & Jaulin, L. (2009). Contractor Programming. Artificial Intelligence 173, 1079– 1100.

  10. Dagan, L. (2006). Potentiel aromatique des raisins de Vitis vinifera L. cv. Petit Manseng et Gros Manseng. Contribution a l’arôme des vins de pays Côtes de Gascognè. Ph.D. thesis. In École nationale supérieure agronomique (Montpellier.

  11. Datta, S., & Nakai, S. (1992). Computer-aided optimization of wine blending. Journal of Food Science, 57(1), 178–182. doi:10.1111/j.1365-2621.1992.tb05450.x.

    Article  Google Scholar 

  12. Ferrier, J.G., & Block, D.E. (2001). Neural-network-assisted optimization of wine blending based on sensory analysis. American Journal of Enology and Viticulture, 52 (4), 386–395. http://www.ajevonline.org/content/52/4/386.abstract.

    Google Scholar 

  13. de Figueiredo, L., & Stolfi, J. (2004). Affine arithmetic: concepts and applications. Numerical Algorithms, 37(1–4), 147–158.

    Article  MathSciNet  MATH  Google Scholar 

  14. Knuppel, O. (1994). Bias/profil: A fast interval library. Computing, 53, 277–287.

    Article  MathSciNet  MATH  Google Scholar 

  15. Koak, J.H., Kang, B.S., Hahm, Y.T., Park, C.S., Baik, M.Y., & Y, K.B. (2010). Blending of different domestic grape wines using mixture design and optimization technique. Food science and biotechnology, 19(4), 1011–1018.

    Article  Google Scholar 

  16. Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., & Krämer, W. (2006). filib++, a fast interval library supporting containment computations. ACM TOMS, 32(2), 299–324.

    Article  MathSciNet  Google Scholar 

  17. Lhomme, O. (1993). Consistency Techniques for Numeric CSPs. In IJCAI (pp. 232–238).

  18. McCormick, G. (1976). Computability of global solutions to factorable nonconvex programs - part 1 - Convex Underestimating Problems. Mathematical Programming, 10, 147–175.

    Article  MathSciNet  MATH  Google Scholar 

  19. Messine, F., & Laganouelle, J.L. (1998). Enclosure methods for multivariate differentiable functions and application to global optimization. Journal of Universal Computer Science, 4(6), 589–603.

    MathSciNet  MATH  Google Scholar 

  20. Messine, F. (1997). Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la résolution des problèmes avec contraintes. Ph.D. thesis. Toulouse: LIMA-IRIT-ENSEEIHT-INPT.

  21. Moore, D.B., & Griffin, T.G. (1978). Computer blending technology. American Journal of Enology and Viticulture, 29(1), 50–53. http://www.ajevonline.org/content/29/1/50.abstract.

    Google Scholar 

  22. Trombettoni, G., Araya, I., Neveu, B., & Chabert, G. (2011). Inner regions and interval linearizations for global optimization. AAAI, 99–104.

  23. Trombettoni, G., & Chabert, G. (2007). Constructive interval disjunction. In Proceedings CP, LNCS 4741, pp. 635–650.

  24. Vismara, P., Coletta, R., & Trombettoni, G. (2013). Constrained wineblending. In Proceedings CP, constraint programming, LNCS 8124, pp. 864–879. Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Vismara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vismara, P., Coletta, R. & Trombettoni, G. Constrained global optimization for wine blending. Constraints 21, 597–615 (2016). https://doi.org/10.1007/s10601-015-9235-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-015-9235-5

Keywords

Navigation