Skip to main content

Advertisement

Log in

Effect of Piriformospora indica Inoculation on some Physiological Traits of Barley (Hordeum vulgare) Under Salt Stress

  • Published:
Chemistry of Natural Compounds Aims and scope

Salinity is a major constraint to crop productivity worldwide. Piriformospora indica was shown to promote the growth and also enhance resistance/tolerance to biotic and abiotic stresses. This work was intended to study the potential of P. indica in enhancing growth and elevating salt resistance in barley (Hordeum vulgare L.). Physiological and morphological experiments were used to investigate the metabolome changes in inoculated plants. The seedlings were inoculated with P. indica and 2 weeks after inoculation were treated with three salt stress levels. Four weeks after inoculation, leaf samples were collected and metabolite was extracted from leaves of inoculated and noninoculated barley (cultivar Pallas) plants. The physiological results showed that P. indica increases the biomass of aerial parts of inoculated plants compared with control plants under ambient and stress condition. Also, fungus affected ion content in inoculated plants and increased the K+/Na+ and Ca2+/Na+ ratios. The metabolomic results revealed that P. indica increases the sugars and free amino acid content in inoculated plants compared with control plant under salt stress. According to the results, this fungus can be used to produce growth-stimulating agents and biological fertilizers for use in crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Varma, S. Verma, N. Sahay, B. Butehorn, and P. Franken, Appl. Environ. Microbiol., 65, 2741 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  2. V. Rai, Biol. Plantarum, 45, 481 (2002).

    Article  CAS  Google Scholar 

  3. M. Ghabooli, B. Khatabi, F. S. Ahmadi, M. Sepehri, M. Mirzaei, A. Amirkhani, J. V. Jorrin-Novo, and G. H. Salekdeh, J. Proteomics, 94, 289 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. F. Waller, H. Achatz, H. Baltruschat, J. Fodor, M. Becker, M. Fischer, T. Heier, R. Huckelhoven, C. Neumann, and D. Von Wettstein, Proc. Natl. Acad. Sci. USA, 102, 13386 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. X. Qiang, M. Weiss, K. H. Kogel, and P. Schafer, Mol. Plant Pathol., 13 (5), 508 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Y. Hu and U. Schmidhalter, J. Plant Nutr. Soil Sci., 168, 541 (2005).

    Article  CAS  Google Scholar 

  7. J. Liu and J. K. Zhu, Proc. Nat. Acad. Sci. USA, 94, 14960 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. H. Knight, J. Trewavas, and M. R. Knight, Plant J., 12, 1067 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. J. Vadassery, S. Ranf, C. Drzewiecki, A. Mithofer, C. Mazars, D. Scheel, J. Lee, and R. Oelmuller, Plant J., 59, 193 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. S. Mahajan and N. Tuteja, Arch. Biochem. Biophys., 444, 139 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. I. Sherameti, B. Shahollari, Y. Venus, L. Altschmied, A. Varma, and R. Oelmuller, J. Biol. Chem., 280, 26241 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. M. F. Thomashow, Annu. Rev. Plant Biol., 50, 571 (1999).

    Article  CAS  Google Scholar 

  13. L. A. Wanner and O. Junttila, Plant Physiol., 120, 391 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. S. Kaur, A. K. Gupta, and N. Kaur, Plant Growth Regul., 30, 61 (2000).

    Article  CAS  Google Scholar 

  15. J. Price, A. Laxmi, S. Martin, and J. C. Jang, Plant Cell, 16, 2128 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. L. Borras, G. A. Slafer, and M. E. Otegui, Field Crops Res., 86, 131 (2004).

    Article  Google Scholar 

  17. H. J. Bohnert and R. G. Jensen, Trends Biotechnol., 14, 89 (1996).

    Article  CAS  Google Scholar 

  18. S. Ramanjulu and D. Bartels, Plant, Cell Environ., 25, 141 (2002).

    Article  CAS  Google Scholar 

  19. M. Mansour, Biol. Plantarum, 43, 491 (2000).

    Article  CAS  Google Scholar 

  20. F. Fougere, D. Le Rudulier, and J. G. Streeter, Plant Physiol., 96, 1228 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. T. Yamaya and H. Matsumoto, Berichte des Ohara Instituts fur Landwirtschaftliche Biologie, Okayama Universitat, 19, 181 (1989).

    Google Scholar 

  22. M. Ashraf and M. Tufail, J. Agron. Crop Sci., 174, 351 (1995).

    Article  CAS  Google Scholar 

  23. M. Ashraf, Biol. Plantarum, 36, 255 (1994).

    Article  CAS  Google Scholar 

  24. W. J. Hurkman, H. P. Tao, and C. K. Tanaka, Plant Physiol., 97, 366 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. L. Simon-Sarkadi, G. Kocsy, and Z. Sebestyen, Acta Biol. Szeged., 46, 73 (2002).

    Google Scholar 

  26. E. Abraham, G. Rigo, G. Szekely, R. Nagy, C. Koncz, and L. Szabados, Plant Mol. Biol., 51, 363 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. M. Mansour, Plant Physiol. Biochem., 36, 767 (1998).

    Article  CAS  Google Scholar 

  28. N. Bouche and H. Fromm, Trends Plant Sci., 9, 110 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. A. M. Kinnersley and F. J. Turano, Crit. Rev. Plant Sci., 19, 479 (2000).

    Article  CAS  Google Scholar 

  30. G. H. Pham, R. Kumari, A. Singh, R. Malla, R. Prasad, M. Sachdev, M. Kaldorf, F. Buscot, R. Oelmuller, and R. Hampp, Plant Surface Microbiol., 593 (2004).

  31. H. Rolletschek, M. R. Hajirezaei, U. Wobus, and H. Weber, Planta, 214, 954 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. L. Voll, R. E. Hausler, R. Hecker, A. Weber, G. Weissenbock, G. Fiene, S. Waffenschmidt, and U. I. Flugge, Plant J., 36, 301 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. M. R. Hajirezaei, Y. Takahata, R. N. Trethewey, L. Willmitzer, and U. Sonnewald, J. Exp. Bot., 51, 439 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. V. B. Tognetti, M. D. Zurbriggen, E. N. Morandi, M. F. Fillat, E. M. Valle, M. R. Hajirezaei, and N. Carrillo, Proc. Nat. Acad. Sci., 104, 11495 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ghabooli.

Additional information

Published in Khimiya Prirodnykh Soedinenii, No. 6, November–December, 2014, pp. 942–946.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghabooli, M. Effect of Piriformospora indica Inoculation on some Physiological Traits of Barley (Hordeum vulgare) Under Salt Stress. Chem Nat Compd 50, 1082–1087 (2014). https://doi.org/10.1007/s10600-014-1164-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10600-014-1164-9

Keywords

Navigation