Skip to main content
Log in

Application of the Barycentric Method to Electromagnetic Wave Diffraction on Arbitrarily Shaped Screens

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

The barycentric method is applied to numerical solution of electromagnetic wave diffraction on screens of arbitrary shape. The main assumption involves the piecewise-linear specification of the screen boundary. A distinctive feature of the barycentric method is the order in which the global basis-function system is generated for the representation of the screen in barycentric coordinates. Existence and uniqueness are established for the solution of the integral electric-field equation on an arbitrarily shaped screen by the barycentric method and rate of convergence bounds are obtained. The main algorithmic procedures are refined by improving the evaluation of the singular integral. The performance of the barycentric method is compared with the Rao–Wilton–Glisson (RWG) on test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Ilyinsky and Y. G. Smirnov, Electromagnetic Wave Diffraction by Conducting Screens, VPS, Utrecht, The Netherlands (1998).

  2. P. Ya. Ufimtsev, Fundamentals of the Physical Theory of Diffraction, 2nd ed., Wiley, Hoboken, NJ (2014).

  3. R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface,” Proc. IEEE, 62, No. 11, 1448–1461 (1974).

    Article  Google Scholar 

  4. W. C. Gibson, The Method of Moments in Electromagnetics, 2nd ed., Chapman and Hall/CRC, NY (2014).

  5. Yu. G. Smirnov, M. Yu. Medvedik, and M. A. Maksimov, “Solution of the problem of electromagnetic-wave diffraction on screens of complex shape,” Izv. Vuzov, Phys.-Math. Sci., Volga Region, No. 4(24), 59–72 (2012).

  6. R. C. Assier and A. V. Shanin, “Diffraction by a quarter–plane. Analytical continuation of spectral functions,” The Quarterly Journal of Mechanics and Applied Mathematics, 72, 51–85 (2019).

    Article  MathSciNet  Google Scholar 

  7. A. G. Kyurkchan and N. I. Smirnova, Mathematical Modeling in Diffraction Theory, Elsevier (2016).

  8. I. S. Polyanskii, Barycentric Method in Computational Electrodynamics [in Russian], Akademiya FSO Rossii, Oryol (2017).

    Google Scholar 

  9. I. S. Polyanskii, “Barycentric method for optimal control of the shape of the mirror-antenna reflecting surface,” Matem. Modelirovanie, 29, No. 11, 140–150 (2017).

    Google Scholar 

  10. I. S. Polyanskii, “Vector barycentric method in computational electrodynamics,” Trudy SPIIRAN, No. 2(51), 206–222 (2017).

  11. I. S. Polyanskii and Yu. S. Pekhov, “Barycentric method for singular integral equations of the mirror-antenna electrodynamic theory,” Trudy SPIIRAN, No. 5(54), 244–262 (2017).

  12. I. S. Polyanskii, “Application of the barycentric method to numerical solution of the inner problem of electrodynamics,” Fizika Volnovykh Protsessov i Ratiotekhnicheskie Sistemy, No. 3(21), 36–42 (2018).

  13. H. Henl, A.W. Maue, and K. Westpfahl, Diffraction Theory [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  14. A. S. Il’inskii and I. S. Polyanskii, “An approximate method for the determination of harmonic barycentric coordinates for arbitrary polygons,” Zh.Vychisl. Mat. i Matem. Fiz., No. 3(59), 38–55 (2019).

  15. L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis [in Russian], 3rd ed., Gostekhizdat, Moscow (1950).

    MATH  Google Scholar 

  16. C. Fletcher, Computational Galerkin Methods [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  17. V. L. Goncharov, Theory of Interpolation and Approximation of Functions [in Russian], 2nd ed., Gostekhizdat, Moscow (1954).

    Google Scholar 

  18. Yu. G. Smirnov, “On convergence of Galerkin methods for equations with elliptical operators on subspaces and on solution of electricfield equations,” Zh. Vychisl. Mat. i Matem. Fiz., No. 1(47), 129–139 (2007).

  19. I. K. Daugavet, Theory of Approximate Methods. Linear Equations [in Russian], 2nd ed., BKhV-Peterburg, St. Peterburg (2006).

  20. M. Yu. Medvedik and Yu. G. Smirnov, “Ellipticity of the electric-field integral equation for absorbing media and convergence of the Rao-Wilton-Glisson method,” Zh. Vychisl. Mat. i Matem. Fiz., No. 1(54), 105–113 (2015).

  21. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators [Russian translation], Mir, Moscow (1980).

    MATH  Google Scholar 

  22. M. A. Krasnosel’skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, and V. Ya. Stetsenko, Approximate Solution of Operator Equations [in Russian], Nauka, Moscow (1969).

  23. N. S. Arkhipov, I. S. Polyanskii, and D. E. Stepanov, “Represenation of reflecting surfaces of an antenna system in problems of analysis and synthesis of mirror antennas by methods of physical optics,” Telekommunikatsii, No. 7, 15–21 (2014).

  24. Yu. V. Vasilevskii, A. A. Danilov, K. N. Lipnikov, and V. N. Chugunov, Computeraized Technologies for the Construction of Unstructured Computation Grids [in Russian], Fizmatlit, Moscow (2016).

    Google Scholar 

  25. M. A. Taylor, B. A. Wingate, and L. P. Bos, Several New Quadrature Formulas for Polynomial Integration in the Triangle, Report-no: SAND2005-0034J; arXiv:math/0501496 [math.NA].

  26. W. Cai, Yu. Yijun, X. C. Yuan, “Singularity treatment and high-order RWG basis functions for integral equations of electromagnetic scattering,” Intern. J. Numerical Methods in Engineering, 53, 31–47 (2002).

    Article  MathSciNet  Google Scholar 

  27. A. S. Il’inskii, I. S. Polyanskii, and D. E. Stepanov, “On convergence of the barycentric method in inner Dirichlet and Neumann problems in ℝ2 for the Helmholtz equation,” Vestn. Udmurt Univ., Matem., Mekhan., Kompyuternye nauki, 31, No. 1 (2021).

  28. M. D. Malykh, “On normal modes of a closed waveguide with discontinuous filling,” Vestn. Ross. Univ. Druzhby Narodov, Ser. Mat., Inform., Fizika, 26, No. 4, 321–330 (2018).

  29. G. M. Vainikko, “Asymptotic error bounds for projection methods in the eigenvalue problem,” Zh. Vychisl. Mat. i Matem. Fiz., No. 3(4), 405–425 (1964).

  30. A. A. Samarskii and A. N. Tikhonov, “On radio wave excitation. I,” Zh. Tekhn. Fiz., 17, No. 11, 1283–1296 (1947).

    Google Scholar 

  31. A. N. Bogolyubov, M. D. Malykh, and A. A. Panin, “Two-sided bounds on eigenvalues of the Dirichlet problem for the Laplace operator and their application in mathematical theory of waveguides,” Vychisl. Metody i Programmirovanie. Novye Vychislitel’nye Tekhnologii, 10, 83–93 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Il’inskiy.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 65, 2021, pp. 15–30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’inskiy, A.S., Polyansky, I.S. & Stepanov, D.E. Application of the Barycentric Method to Electromagnetic Wave Diffraction on Arbitrarily Shaped Screens. Comput Math Model 32, 7–21 (2021). https://doi.org/10.1007/s10598-021-09513-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-021-09513-2

Keywords

Navigation