Skip to main content
Log in

Optical Selection of Dark States of Multilevel Atomic Ensembles

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

A method is proposed for constructing the dark states of multilevel atomic ensembles by selection based on statistical determination of the detection delay for photons escaping from a cavity. Numerical experiments are reported simulating this selection for two- and three-level atoms. Supercomputer simulation confirms the hypothesis that the general explicit form of the dark subspace is a linear combination of antisymmetric ground states of multilevel atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. T. Jaynes and F.W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE, 51, No. 1, 89–109 (1963); doi:https://doi.org/10.1109/PROC.1963.1664.

    Article  Google Scholar 

  2. R. Dicke, Phys. Rev., 93, 99 (1954).

    Article  Google Scholar 

  3. D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A, 76, 03 (2007).

    Article  Google Scholar 

  4. S. Huelga and M. Plenio, “Vibration, quanta and biology,” Contemp. Phys., 54, 181–207 (2013).

    Article  Google Scholar 

  5. M. Plenio, “Dephasing assisted transport: Quantum networks and biomolecules,” New J. Phys., 10, 113019 (2008).

    Article  Google Scholar 

  6. Y. I. Ozhigov and N. A. Skovoroda, “Qubit model of Jaynes-Cummings-Hubbard with phonon environment for exciton transport in light-harvesting FMO comlex,” in: Proc. SPIE, Int. Conf. on Micro and Nano-Electronics, Ser. 9440, 94401M (2014).

    Google Scholar 

  7. H. Azuma, “Quantum computation with the Jaynes-Cummings models,” Prog. Theor. Phys., 126, 369–385 (2011).

    Article  Google Scholar 

  8. A. Ambainis, “Quantum walks and their algorithmic applications,” Int. J. Quantum Information, 1, 507–518 (2003).

    Article  Google Scholar 

  9. A. V. Kulagin, V. Y. Ladunov, Y. I. Ozhigov, N. A. Skovoroda, and N. B. Victorova, “Homogeneous atomic ensembles and singlemode field: review of simulation results,” in: Proc. SPIE, International Conference on Micro- and Nano-Electronics 2018, Ser. 11022: 110222C (2019); https://doi.org/10.1117/12.2521763.

  10. M. T. Tavis, A Study of an n Molecule Quantized-Radiation-Field Hamiltonian, Dissertation; https://arxiv.org/abs/1206.0078.

  11. P. Kok, K. Nemoto, and W. J. Munro, Properties of multi-partite dark states; http://lanl.arxiv.org/abs/quant-ph/0201139 (2002).

  12. Y. I. Ozhigov, “Space of dark states in Tavis-Cummings model,” Modern Infor-mation Technologies and IT Education, 15, No. 1, 27–32 (2019); DOI: 10.2555915/SITITO.15.201901.13-26, https://arxiv.org/abs/1606.08483.

  13. A. André, L. M. Duan, and M. D. Lukin, “Coherent atom interactions mediated by dark-state polaritons,” Phys. Rev. Lett., 88, 243602 (2002).

    Article  Google Scholar 

  14. J. Hansom, C. Schulte, C. Le Gall, C. Matthiesen, E. Clarke, M. Hugues, J. M. Taylor, and M. Atatüre, “Environment-assisted quantum control of a solid-state spin via co-herent dark states,” Nature Physics, 10, 725–730 (2014).

    Article  Google Scholar 

  15. E. S. Lee, C. Geckeler, J. Heurich, A. Gupta, KitIu Cheong, S. Secrest, and P. Meystre, “Dark states of dressed Bose-Einstein condensates,” Phys. Rev. A, 60, 4006 (1999).

    Article  Google Scholar 

  16. S. V. Kozyrev and I. V. Volovich, Dark Stats in Quantum Photosynthesis; http://lanl.arxiv.org/abs/1603.07182.

  17. C. Pöltl, C. Emary, and T. Brandes, “Spin entangled two-particle dark state in quan-tum transport through coupled quantum dots,” Phys. Rev. B, 87, 045416 (2013).

    Article  Google Scholar 

  18. T. Tanamoto, K. Ono, and F. Nori, “Steady-state solution for dark states using a three-level system in coupled quantum dots,” Jpn. J. Appl. Phys., Part 1, 51, 02BJ07 (2012).

  19. D. J. Berkeland and M. G. Boshier, Destabilization of Dark States and Optical Spectroscopy in Zeeman-Degenerate Atomic Systems; http://arxiv.org/pdf/quant-ph/0111018v1.pdf.

  20. Y. I. Ozhigov, “Dark states of atomic ensembles: properties and preparation,” in: Proc. SPIE, International Conference on Microand Nano-Electronics 2016, Ser. 10224: 102242Y (2016); https://doi.org/10.1117/12.2264516.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kulagin.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 64, 2020, pp. 17–30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulagin, A.V., Ozhigov, Y.I. Optical Selection of Dark States of Multilevel Atomic Ensembles. Comput Math Model 31, 431–441 (2020). https://doi.org/10.1007/s10598-021-09504-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-021-09504-3

Keywords

Navigation