Skip to main content
Log in

Hyperchaotic Analysis and Adaptive Projective Synchronization of Nonlinear Dynamical System

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

In this paper, a new nonlinear dynamical system has been studied which is obtained from the 3D chaotic system. The hyperchaotic analysis of the new system is checked in terms of dissipation, equilibrium points and their stability, Lyapunov exponent, time series, phase portraits, Poincaré section and bifurcation diagram. Furthermore, the adaptive projective synchronization technique is used to synchronize the novel hyperchaotic system. A brief theoretical analysis and simulation results are presented to prove the behavior of the novel hyperchaotic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Chen, Controlling Chaos and Bifurcations in Engineering Systems, CRC Press (1999).

  2. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett., 64, No. 8, 821–824 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. K. Shi, X. Liu, H. Zhu, and S. Zhong, “New master-slave synchronization criteria of chaotic Lur’e systems with time-varying-delay feedback control,” in: Mathematical and Computational Approaches in Advancing Modern Science and Engineering, pp. 725–736 (2016).

  4. S.Vaidyanathan and S. Sampath, “Complete synchronization of hyperchaotic systems via novel sliding mode control,” in: Advances in Chaos Theory and Intelligent Control, pp. 327–347 (2016).

  5. S. Xu, Y. Tang, H. Sun, Z. Zhou, and Y. Yang, “Characterizing the anticipating chaotic synchronization of RCL-shunted Josephson junctions,” Int. J. Non-Linear Mech., 47, No. 10, 1124–1131 (2012).

    Article  Google Scholar 

  6. S. Vaidyanathan and A. T. Azar, “Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities,” in: Advances in Chaos Theory and Intelligent Control, pp. 155–178 (2016).

  7. X. Wu, and H. Wang, “A new chaotic system with fractional order and its projective synchronization,” Nonlinear Dynam., 61, No. 3, 407–417 (2010).

  8. G. M. Mahmoud, E. E. Mahmoud, and A. A. Arafa, “Projective synchronization for coupled partially linear complex variable systems with known parameters,” Math. Methods Appl. Sci., 40, 1214–1222 (2017).

    Article  MATH  MathSciNet  Google Scholar 

  9. Y. Shi, P. Zhu, and K. Qin, “Projective synchronization of different chaotic neural networks with mixed time delays based on an integral sliding mode controller,” Neurocomputing, 123, 443–449 (2014).

    Article  Google Scholar 

  10. V. T. Pham, S. Vaidyanathan, C. K. Volos, T. M. Hoang and V. Van Yem, “Dynamics, synchronization and SPICE implementation of a memristive system with hidden hyperchaotic attractor,” in: Advances in Chaos Theory and Intelligent Control, pp. 35–52 (2016).

  11. X. J. Wu, X. L. Wu and X. Y. Luo, “Adaptive neural network dynamic surface control for a class of nonlinear systems with uncertain time delays,” Int. J. Autom. Comput., 13, No. 4, 409–416 (2016).

    Article  Google Scholar 

  12. R. Vicente, J. L Dauden, P. Colet and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delay feedback loop,” in: Integrated Optoelectronics Devices, International Society for Optics and Photonics, pp. 452–462 (2003, July).

  13. H. Zhang, X. K. Ma, M. Li and J. L Zou, “Controlling and tracking hyperchaotic Rössler system via active backstepping design,” Chaos, Solitons and Fractals, 26, No. 2, 353–361 (2005).

    Article  MATH  Google Scholar 

  14. P. Q. Jiang, B. H. Wang, S. L. Bu, Q. H. Xia, and X. S. Luo, “Hyperchaotic synchronization in deterministic small-world dynamical networks,” Int. J. Mod. Phys. B, 18, No. 17n19, 2674–2679 (2004).

  15. G. Prez, and H. A. Cerdeira, “Extracting messages masked by chaos,” Phys. Rev. Lett., 74, No. 11, 1970–1973 (1995).

    Article  Google Scholar 

  16. L. Pecora, “Hyperchaos harnessed,” Phys. World, 9, No. 5, 17 (1996).

    Article  Google Scholar 

  17. Y. Lin, C. Wang, and L. Zhou, “Generation and implementation of grid multiscroll hyperchaotic attractors using CCII+,” Optik – Int. J. Light and Electron Optics, 127, No. 5, 2902-2906 (2016).

    Article  Google Scholar 

  18. O. E. Rössler, “An equation for hyperchaos,” Phys. Lett. A, 71, No. 2, 155–157 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Matsumoto, L. O. Chua, and K. Kobayashi, “Hyper chaos: laboratory experiment and numerical confirmation,” IEEE Trans. Circuits Syst., 33, No. 11, 1143–1147 (1986).

    Article  Google Scholar 

  20. C. Z. Ning and H. Haken, “Detuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurcations,” Phys. Rev. A, 41, No. 7, 3826 (1990).

    Article  Google Scholar 

  21. S. Rasappan, “Hybrid synchronization of hyperchaotic n-scroll Chua circuit using adaptive backstepping control,” Cogent Engineering, 2, No. 1, 1009273 (2015).

  22. A. Khan and M. A. Bhat, “Hyper-chaotic analysis and adaptive multi-switching synchronization of a novel asymmetric non-linear dynamical system,” Int. J. Dyn. Control, 1–11 (2016); doi:https://doi.org/10.1007/s40435-016-0274-6.

  23. Y. Li, W. K. Tang, and G. Chen, “Hyperchaos evolved from the generalized Lorenz equation,” Int. J. Circuit Theory Appl., 33, No. 4, 235–251 (2005).

    Article  MATH  Google Scholar 

  24. X. Wang and G Chen, “ Constructing a chaotic system with any number of equilibria,” Nonlinear Dynam., 71, No. 3, 429–436 (2013).

    Article  MathSciNet  Google Scholar 

  25. G. Chen and T. Ueta, “Yet another chaotic attractor,” Int. J. Bifurcation Chaos, 9, No. 7, 1465–1466 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  26. G. M. Mahmoud, E. E. Mahmoud, and A. A. Arafa, “On modified time delay hyperchaotic complex Lü system,” Nonlinear Dynam., 80, No. 2, 855–869 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  27. C. X. Zhu, Y. H. Liu, and Y. Guo, “Theoretic and numerical study of a new chaotic system,” Intelligent Information Management, 2, No. 2,104 (2010).

  28. X. Wu and H. Wang, “A new chaotic system with fractional order and its projective synchronization,” Nonlinear Dynam., 67, No. 3, 407–417 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Yu, G. Cai, and Y. Li, “Dynamic analysis and control of a new hyperchaotic finance system,” Nonlinear Dynam., 67, No. 3, 2171–2182 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  30. Y. Gao and C. Liang, “A new 4D hypcrchaotic system and its generalized function projective synchronization,” Mathematical Problems in Engineering (2013), Article ID 701756.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Bhat, M.A. Hyperchaotic Analysis and Adaptive Projective Synchronization of Nonlinear Dynamical System. Comput Math Model 28, 517–530 (2017). https://doi.org/10.1007/s10598-017-9378-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-017-9378-x

Keywords

Navigation