Skip to main content
Log in

Mathematical Modeling of Raft Polymerization

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

A new mathematical model of Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization is proposed, describing a series of experimental data on styrene bulk polymerization in the presence of various RAFT agents. The polymerization slowdown observed with increasing concentration of the RAFT agent is attributable to the accumulation of intermediate products that participate in chain transfers to both low-molecular and polymer RAFT agents, whereas the length of the initiation period is determined entirely by the activity of the low-molecular RAFT agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Braunecker and K. Matyjaszewski, “Controlled/living radical polymerization: Features, developments, and perspectives,” Progress in Polymer Science, 32, 93–146 (2007).

    Article  Google Scholar 

  2. S. I. Kuchanov, M. Yu. Zaremsky, A. V. Olenin, E. S. Garina, and V. B. Golubev, “Kinetics of radical polymerization with participation of iniferters,” Dokl. Akad. Nauk SSSR, 309, 371–375 (1989).

    Google Scholar 

  3. M. Yu. Zaremski, S. M. Mel’nikov, A. V. Olenin, S. I. Kuchanov, E. S. Garina, M. B. Lachinov, V. B. Golubev, and V. A. Kabanov, “On the absence of the gel-effect in free-radical polymerization with participation of iniferters,” Vysokomol. Soedin., Ser. B, 32, 404–405 (1990).

    Google Scholar 

  4. S. I. Kuchanov and A. V. Olenin, “Application of iniferters for synthesis of compositionally homogeneous copolymers,” Vysokomol. Soedin., Ser. B, 33, 563–564 (1991).

    Google Scholar 

  5. M. Yu. Zaremski, A. V. Olenin, E. S. Garina, S. I. Kuchanov, V. B. Golubev, and V. A. Kabanov, “Mechanism of photoinitiated polymerization of styrene in the presence of iniferter of benzyl dithiocarbamate,” Vysokomol. Soedin., Ser. A, 33, 2167–2175 (1991).

    Google Scholar 

  6. S. I. Kuchanov and A. V. Olenin, “Application of iniferters for obtaining composition homogeneous copolymers,” Polym. Bull., 28, 449–450 (1992).

    Article  Google Scholar 

  7. S. I. Kuchanov, “Quantitative theory of radical copolymerization with participation of iniferters,” Vysokomol. Soedin., Ser. A, 35, 87–94 (1993).

    Google Scholar 

  8. S. I. Kuchanov, “Quantitative theory of iniferter polymerization. I. Kinetics,” J. Polymer Sci., 32, 1557–1588 (1994).

    Article  Google Scholar 

  9. J. Chiefari, Y. K. Chong, F. Ercole, J. Kristina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, and S. H. Thang, “Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process,” Macromolecules, 31, 5559–5562 (1998).

    Article  Google Scholar 

  10. T. P. Le, G. Moad, E. Rizzardo, and S. H. Thang, PCT Int. Pat. Appl. WO 98/01478, 1998, Chem. Abstr., 128, 115390 (1998).

  11. D. Charmot, P. Corpart, D. Michelet, S. Zard, and T. Biadatti (Rhodia Chemie), PCT Patent WO 9858974, 1998; Chem. Abstr., 130, 82018 (1999).

  12. M. Benaglia, J. Chiefari, Y. K. Chong, G. Moad, E. Rizzardo, and S. H. Thang, “Universal (switchable) RAFT agents,” J. Amer. Chem. Soc., 131, 6914–6915 (2009).

    Article  Google Scholar 

  13. D. J. Keddie, G. Moad, E. Rizzardo, and S. H. Thang, “RAFT agent design and synthesis,” Macromolecules, 45, 5321–5342 (2012).

    Article  Google Scholar 

  14. C. Barner-Kowollik (ed.), Handbook of RAFT Polymerization, WILEY-VCH, Weinheim (2008).

    Google Scholar 

  15. C. Barner-Kowollik, J. F. Quinn, T. L. Uyen Nguyen, J. P. A. Heuts, and T. P. Davis, “Kinetic investigations of reversible addition fragmentation chain transfer polymerizations: cumyl phenyldithioacetate mediated homopolymerizations of styrene and methyl methacrylate,” Macromolecules, 34, 7849–7857 (2001).

    Article  Google Scholar 

  16. M. J. Monteiro and H. Brouwer, “Intermediate radical termination as the mechanism for retardation in reversible addition−fragmentation chain transfer polymerization,” Macromolecules, 34, 349–352 (2001).

    Article  Google Scholar 

  17. S. I. Kuchanov and T. V. Zharnikov, “Scattering properties of gradient heteropolymers obtained by ‘living’ free-radical copolymerization,” Europ. Phys. J. Ser. E, 7, 183–202 (2002).

    Article  Google Scholar 

  18. T. V. Zharnikov, A. S. Yakovlev, and S. I. Kuchanov, “Quantitative theory of ‘living’ free-radical polymerization. III. Calculation of copolymerization products’ spinodal,” J. Polym. Sci., Pt B, 41, 892–902 (2003).

    Article  Google Scholar 

  19. T. V. Zharnikov, Thermodynamic Description of Synthetic Gradient Copolymers [in Russian], Candidate dissertation, Moscow State University, Faculty of Physics (2003).

  20. A. R. Wang and S. Zhu, “Effects of diffusion-controlled radical reactions on RAFT polymerization,” Macromolecular Theory and Simulations, 12, 196–208 (2003).

    Article  Google Scholar 

  21. A. D. Peklak, A. Butte, G. Storti, and M. Morbidelli, “Gel effect in the bulk reversible addition-fragmentation chain transfer polymerization of methyl methacrylate: modeling and experiments,” J. Polymer Sci. Pt A, 44, 1071–1085 (2006).

    Article  Google Scholar 

  22. N. V. Ulitin, T. R. Deberdeev, and A. A. Berlin, “Controlling the molecular weight and polydispersity index of polystyrene by varying the initial parameters of addition–fragmentation radical polymerization,” Rus. J. Phys. Chem. B, 8; 227–232 (2014).

  23. S. W. Prescott, “Chain-length dependence in living/controlled free-radical polymerizations: physical manifestation and Monte Carlo simulation of reversible transfer agents,” Macromolecules, 36, 9608–9621 (2003).

    Article  Google Scholar 

  24. E. V. Chernikova, A. V. Tarasenko, E. S. Garina, and V. B. Golubev, “Controlled radical polymerization of styrene mediated by dithiobenzoates as reversible addition-fragmentation chain-transfer agents,” Polymer Science, Ser. A, 48, 1046–1057 (2006).

    Article  Google Scholar 

  25. E. V. Chernikova, P. S. Terpugova, E. S. Garina, and V. B. Golubev, “Controlled radical polymerization of styrene and n-butyl acrylate mediated by trithiocarbonates,” Polymer Science, Ser. A, 49, 108–119 (2007).

    Article  Google Scholar 

  26. E. V. Chernikova, Pseudo-Living Radical Homo- and Co-Polymerization by Reversible Chain Transfer Mechanism [in Russian], doctoral dissertation, Moscow State University, Faculty of Chemistry (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Semendyaeva.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 47, 2014, pp. 60–76.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semendyaeva, N.L., Kuchanov, S.I. Mathematical Modeling of Raft Polymerization. Comput Math Model 26, 514–527 (2015). https://doi.org/10.1007/s10598-015-9288-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-015-9288-8

Keywords

Navigation