Skip to main content

Advertisement

Log in

A benchmark study on reactive two-phase flow in porous media: Part I - model description

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper proposes a benchmark study for reactive multiphase multicomponent flow in porous media. Modeling such problem leads to a highly nonlinear coupled system of partial differential equations, ordinary differential equations and algebraic constraints, which requires special numerical treatment. The benchmark consists of five test problems in total (both in 1D and in 2D), with varying degrees of difficulty, designed to verify the algorithms and the codes dedicated to simulating coupled isothermal Hydro-Chemical processes during injection and storage of CO2 in the subsurface. It is intended to be used as a basis for comparing codes in order to better understand different couplings such as chemical reactions with two-phase flow, phase behavior with equilibrium reactions, dissolution and precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

The original statement of the benchmark, as well as a set of files containing the data given in Tables 2 to 9 and Tables 10 to 15 are available from https://doi.org/10.5281/zenodo.8319570.

Additionally, all the data necessary to run the benchmark with OpenDarts [24] are contained in a Python script that is available at https://gitlab.com/open-darts/darts-models/-/tree/development/publications/23_chemical_benchmark, and also as a Jupyter Notebook at https://gitlab.com/open-darts/darts-workshop/-/blob/main/4.Chemical_benchmark.ipynb.

Abbreviations

A :

Exponent for porosity–permeability dependence

\(a_{cw}\) :

Activity of species c

C :

Number of fluid species

\(C_{\alpha }\) :

Phase compressibility of phase \(\alpha \)

\(d_{c\alpha }\) :

Diffusion coefficient

\(f_{c\alpha }\) :

Fugacity of species c in phase \(\alpha \)

g :

Gravity constant

h :

vertical coordinate

\(\mathbb {K}\) :

Permeability

\(\mathbb {K}_0\) :

Initial permeability

\(K_q\) :

Equilibrium constant for reaction q

\(K_{c\alpha }\) :

Phase partition coefficient for species c in phase \(\alpha \)

\(k_{r\alpha }\) :

Relative permeabilty function for phase \(\alpha \)

\(k_{r\alpha }^e\) :

End-point for relative permeability for phase \(\alpha \)

\(l_c\) :

Total flux of fluid species c

M :

Number of mineral phases

\(M_w\) :

Number of moles of water per kg of water

\({\mathcal M}_m\) :

Molar mass of mineral species m

\(n_c\) :

Number of moles of fluid species c

\(n_K\) :

Number of kinetic reactions

\(n_m\) :

Number of moles of mineral species m

\(n_Q\) :

Number of equilibrium reactions

\(n_{\alpha }\) :

Brooks-Corey exponent for phase \(\alpha \)

\(N_{x,y,z}\) :

Number of control volumes

P :

Number of fluid phases

p :

Pressure

\(p_0\) :

Reference pressure

\(P_{\text {ini}}\) :

Initial pressure

\(P_{\text {out}}\) :

Outflow pressure

\(q_c\) :

Total well flow-rate for fluid species c

\(Q_q\) :

Reaction quotient for equilibrium reaction q

\(Q_{\text {inj}}\) :

Injection rate

\(r_k^K\) :

Reaction rate for kinetic reaction k

\(r_q^Q\) :

Reaction rate for equilibrium reaction q

\(\textbf{r}^K\) :

Vector of kinetic reaction rates

\(\textbf{r}^Q\) :

Vector of equilibrium reaction rates

\(s_{\alpha }\) :

Saturation of phase \(\alpha \)

\(s_{r\alpha }\) :

Residual saturation for phase \(\alpha \)

T :

Simulation time

\(\textbf{u}_{\alpha }\) :

Darcy velocity of phase \(\alpha \)

\(v_{ik}\) :

Stoichiometric coefficient for species i in reaction k

\(\textbf{v}^K\) :

Stoichiometrix matrix for kinetic reactions

\(\textbf{v}^Q\) :

Stoichiometric matrix for equilibrium reactions

\(x_{c\alpha }\) :

Molar fraction of species c in phase \(\alpha \)

\(z_c\) :

Overall mole fraction of component c

\(\Delta \{x, y, z\}\) :

Control volume dimension

\(\phi \) :

Porosity

\(\phi _0\) :

Initial porosity

\(\phi _{c\alpha }\) :

Fugacity coefficient for species c in phase \(\alpha \)

\(\gamma \) :

Activity coefficient

\(\mu _{\alpha }\) :

Dynamic viscosity of phase \(\alpha \)

\(\nu _{\alpha }\) :

Mass fraction of phase \(\alpha \)

\(\hat{\rho }_{\alpha }\) :

Mass density of phase \(\alpha \)

\(\rho _{\alpha ,0}\) :

Reference molar density of phase \(\alpha \)

\(\rho _{\alpha }\) :

Molar density of phase \(\alpha \)

c :

Fluid species

m :

Mineral species

References

  1. IPCC: Special Report on Carbon Dioxide Capture and Storage, p. 431. Cambridge University Press, Cambridge, UK (2005). Prepared by working group III of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/

  2. Scheer, D., Class, H., Flemisch, B.: Geologic carbon sequestration. In: Subsurface Environmental Modelling Between Science and Policy, pp. 109–152. Springer, Switzerland (2021). https://doi.org/10.1007/978-3-030-51178-4

  3. Carrera, J., Saaltink, M.W., Soler-Sagarra, J., Wang, J., Valhondo, C.: Reactive transport: A review of basic concepts with emphasis on biochemical processes. Energies 15(3) (2022). https://doi.org/10.3390/en15030925

  4. Steefel, C.I.: Reactive transport at the crossroads. Rev. Mineral. Geochem. 85(1), 1–26 (2019). https://doi.org/10.2138/rmg.2019.85.1

    Article  CAS  Google Scholar 

  5. Zhang, F., Yeh, G.T., Parker, J.C. (eds.): Groundwater Reactive Transport Models. Bentham Publishers, United Arab Emirates (2012). https://doi.org/10.2174/97816080530631120101

  6. Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L., Molins, S., Moulton, D., Shao, H., Šimøunek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface environmental simulation. Comput. Geosci. 19(3), 445–478 (2015). https://doi.org/10.1007/s10596-014-9443-x

    Article  MathSciNet  Google Scholar 

  7. Wheeler, M.F., Sun, S., Thomas, S.G.: Modeling of flow and reactive transport in IPARS. In: Zhang, F., Yeh, G.T., Parker, J.C. (eds.) Groundwater Reactive Transport Models, pp. 42–73. Bentham Publishers, United Arab Emirates (2012). https://doi.org/10.2174/978160805306311201010042

  8. Hammond, G.E., Lichtner, P.C., Lu, C., Mills, R.T.: PFLOTRAN: Reactive flow & transport code for use on laptops to leadership-class supercomputers. In: Zhang, F., Yeh, G.T., Parker, J.C. (eds.) Groundwater Reactive Transport Models, pp. 141–159. Bentham Publishers, United Arab Emirates (2012). https://doi.org/10.2174/978160805306311201010141

  9. Lichtner, P.C., Hammond, G.E., Lu, C., Karra, S., Bisht, G., Andre, B., Mills, R.T., Kumar, J., Frederick, J.M.: PFLOTRAN Web page (2020). http://www.pflotran.org

  10. Hao, Y., Sun, Y., Nitao, J.J.: Overview of NUFT: A versatile numerical model for simulating flow and reactive transport in porous media. In: Zhang, F., Yeh, G.T., Parker, J.C. (eds.) Groundwater Reactive Transport Models, pp. 212–239. Bentham Publishers, United Arab Emirates (2012). https://doi.org/10.2174/978160805306311201010212

  11. Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT - a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO\(_2\) geological sequestration. Comput. Geosci. 32(2), 145–165 (2006). https://doi.org/10.1016/j.cageo.2005.06.014

    Article  ADS  CAS  Google Scholar 

  12. Xu, T., Sonnenthal, E., Spycher, N., Zhang, G., Zheng, L., Pruess, K.: TOUGHREACT: A simulation program for subsurface reactive chemical transport under non-isothermal multiphase flow conditions. In: Zhang, F., Yeh, G.T., Parker, J.C. (eds.) Groundwater Reactive Transport Models, pp. 74–95. Bentham Publishers, United Arab Emirates (2012). https://doi.org/10.2174/978160805306311201010074

  13. van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Module-oriented modeling of reactive transport with HYTEC. Comput. Geosci. 29(3), 265–275 (2003). https://doi.org/10.1016/S0098-3004(03)00004-9

    Article  ADS  CAS  Google Scholar 

  14. Sin, I., Lagneau, V., Corvisier, J.: Integrating a compressible multicomponent two-phase flow into an existing reactive transport simulator. Adv. Water Resour. 100, 62–77 (2017). https://doi.org/10.1016/j.advwatres.2016.11.014

    Article  ADS  CAS  Google Scholar 

  15. White, M.D., Oostrom, M.: STOMP subsurface transport over multiple phases version 4.0 user’s guide. Technical report, Pacific Northwest National Laboratory (2006). https://stomp-userguide.pnnl.gov/

  16. Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 38–9121 (2002). https://doi.org/10.1029/2001WR000862

  17. Mayer, K.U., Amos, R.T., Molins, S., Gérard, F.: Reactive Transport Modeling in Variably Saturated Media with MIN3P: Basic Model Formulation and Model Enhancements. In: Zhang, F., Yeh, G.T., Parker, J.C. (eds.) Groundwater Reactive Transport Models, pp. 186–211. Bentham Publishers, United Arab Emirates (2012). https://doi.org/10.2174/978160805306311201010186

  18. Yeh, G.T., Tripathi, V.S., Gwo, J.P., Cheng, H.P., Cheng, R.J., Salvage, K.M., Li, M.H., Fang, Y.L., Li, Y., Sun, J.T., Zhang, F., Siegel, M.D.: HYDROGEOCHEM: A coupled model of variably saturated flow, thermal transport, and reactive biogeochemical transport. In: Zhang, F., Yeh, G.T., Parker, J.C. (eds.) Groundwater Reactive Transport Models, pp. 3–41. Bentham Publishers, United Arab Emirates (2012). https://doi.org/10.2174/978160805306311201010003

  19. Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.O., Fischer, T., Görke, U.J., Kalbacher, T., Kosakowski, G., McDermott, C.I., Park, C.H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y.Y., Singh, A.K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B.: OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. 67, 589–599 (2012). https://doi.org/10.1007/s12665-012-1546-x

    Article  ADS  CAS  Google Scholar 

  20. Kolditz, O., Görke, U.-J., Shao, H., Wang, W. (eds.): Thermo-hydro-mechanical-chemical processes in porous media. Lecture Notes in Computational Science and Engineering, vol. 86. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27177-9

  21. Farshidi, S.F., Fan, Y., Durlofsky, L.J., Tchelepi, H.A.: Chemical reaction modeling in a compositional reservoir-simulation framework. SPE Reservoir Simulation Conference (2013). https://doi.org/10.2118/163677-MS

  22. Samper, J., Yang, C., Zheng, L., Montenegro, L., Xu, Y., Dai, Z., Zhang, G., Lu, C., Moreira, S.: CORE\(^{\text{2D}}\) V4: A code for water flow, heat and solute transport, geochemical reactions, and microbial processes. In: Zhang, F., Yeh, G.T., Parker, J.C. (eds.) Groundwater Reactive Transport Models, pp. 160–185. Bentham Publishers, United Arab Emirates (2012). https://doi.org/10.2174/978160805306311201010160

  23. Gamazo, P., Slooten, L.J., Carrera, J., Saaltink, M.W., Bea, S., Soler, J.: PROOST: object-oriented approach to multiphase reactive transport modeling in porous media. J. Hydroinf. 18(2), 310–328 (2015). https://doi.org/10.2166/hydro.2015.126

    Article  Google Scholar 

  24. Voskov, D., Saifullin, I., Wapperom, M., Tian, X., Palha, A., Orozco, L., Novikov, A.: open Delft Advanced Research Terra Simulator (open-DARTS). https://doi.org/10.5281/zenodo.8116928

  25. Yeh, G.T., Tripathi, V.S.: A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components. Water Resour. Res. 25, 93–108 (1989). https://doi.org/10.1029/WR025i001p00093

    Article  ADS  CAS  Google Scholar 

  26. Sin, I., Corvisier, J.: Multiphase multicomponent reactive transport and flow modeling. Rev. Mineral. Geochem. 85(1), 143–195 (2019). https://doi.org/10.2138/rmg.2019.85.6

    Article  CAS  Google Scholar 

  27. Saaltink, M., Vilarrasa, V., De Gaspari, F., Silva, O.E., Carrera, J., Roetting, T.: A method for incorporating equilibrium chemical reactions into multiphase flow models for CO\(_2\) storage. Adv. Water Resour. 62, 431–441 (2013). https://doi.org/10.1016/j.advwatres.2013.09.013

    Article  ADS  CAS  Google Scholar 

  28. Wang, Y., Fernández-Garcia, D., Saaltink, M.W.: Modeling reactive multi-component multi-phase flow for Geological Carbon Sequestration (GCS) with Matlab. Comput. Geosci. 172, 105300 (2023). https://doi.org/10.1016/j.cageo.2023.105300

    Article  CAS  Google Scholar 

  29. Fan, Y., Durlofsky, L.J., Tchelepi, H.A.: A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO\(_2\) storage simulations. Adv. Water Resour. 42, 47–61 (2012). https://doi.org/10.1016/j.advwatres.2012.03.012

    Article  ADS  CAS  Google Scholar 

  30. Knodel, M.M., Kräutle, S., Knabner, P.: Global implicit solver for multiphase multicomponent flow in porous media with multiple gas components and general reactions. Comput. Geosci. 26, 697–724 (2022). https://doi.org/10.1007/s10596-022-10140-y

    Article  MathSciNet  Google Scholar 

  31. Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S.E., Jin, M., Krug, S., Labregere, D., Naderi Beni, A., Pawar, R.J., Sbai, A., Thomas, S.G., Trenty, L., Wei, L.: A benchmark study on problems related to CO\(_2\) storage in geologic formations. Comput. Geosci. 13, 409–434 (2009). https://doi.org/10.1007/s10596-009-9146-x

    Article  Google Scholar 

  32. Carrayrou, J., Kern, M., Knabner, P.: Reactive transport benchmark of MoMaS. Comput. Geosci. 14, 385–392 (2010). https://doi.org/10.1007/s10596-009-9157-7

    Article  Google Scholar 

  33. Carrayrou, J., Hoffmann, J., Knabner, P., Kräutle, S., de Dieuleveult, C., Erhel, J., van der Lee, J., Lagneau, V., Mayer, K.U., MacQuarrie, K.T.B.: Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems-the MoMaS benchmark case. Comput. Geosci. 14, 483–502 (2010). https://doi.org/10.1007/s10596-010-9178-2

    Article  Google Scholar 

  34. Steefel, C.I., Yabusaki, S.B., Mayer, K.U.: Reactive transport benchmarks for subsurface environmental simulation. Comput. Geosci. 19, 439–443 (2015). https://doi.org/10.1007/s10596-015-9499-2

    Article  Google Scholar 

  35. Dwivedi, D., Arora, B., Molins, S., Steefel, C.I.: Benchmarking reactive transport codes for subsurface environmental problems. In: Thangarajan, M., Singh, V.P. (eds.) Groundwater Assessment, Modeling, and Management, pp. 299–316. CRC Press, Boca-Raton, USA (2016). https://doi.org/10.1201/9781315369044

  36. Nordbotten, J.M., Fernø, M., Flemisch, B., Juanes, R., Jørgensen, M.: Final Benchmark Description: FluidFlower International Benchmark Study. (2022). https://doi.org/10.5281/zenodo.6807102

  37. Flemisch, B., Nordbotten, J.M., Fernø, M., Juanes, R., Class, H., Delshad, M., Doster, F., Ennis-King, J., Franc, J., Geiger, S., Gläser, D., Green, C., Gunning, J., Hajibeygi, H., Jackson, S.J., Jammoul, M., Karra, S., Li, J., Matthäi, S.K., Miller, T., Shao, Q., Spurin, C., Stauffer, P., Tchelepi, H., Tian, X., Viswanathan, H., Voskov, D., Wang, Y., Wapperom, M., Wheeler, M.F., Wilkins, A., Youssef, A.A., Zhang, Z.: The FluidFlower international benchmark study: process, modeling results, and comparison to experimental data. arXiv (2023). https://doi.org/10.48550/ARXIV.2302.10986

  38. Oberkampf, W.L., Trucano, T.G., Hirsch, C.: Verification, validation, and predictive capability in computational engineering and physics. Appl. Mech. Rev. 57(5), 345–384 (2004). https://doi.org/10.1115/1.1767847

    Article  ADS  Google Scholar 

  39. Kolditz, O., Bauer, S., Beyer, C., Böttcher, N., Dietrich, P., Görke, U.-J., Kalbacher, T., Park, C.-H., Sauer, U., Schütze, C., Shao, H., Singh, A., Taron, J., Wang, W., Watanabe, N.: A systematic benchmarking approach for geologic CO\(_2\) injection and storage. Environ. Earth Sci. 67(2), 613–632 (2012). https://doi.org/10.1007/s12665-012-1656-5

    Article  ADS  CAS  Google Scholar 

  40. Sin, I., Lagneau, V., De Windt, L., Corvisier, J.: 2D simulation of natural gas reservoir by two-phase multicomponent reactive flow and transport-description of a benchmarking exercise. Math. Comput. Simul. 137, 431–447 (2017). https://doi.org/10.1016/j.matcom.2016.12.003

    Article  MathSciNet  Google Scholar 

  41. Águila, J.F., Montoya, V., Samper, J., Montenegro, L., Kosakowski, G., Krejci, P., Pfingsten, W.: Modeling cesium migration through Opalinus clay: a benchmark for single- and multi-species sorption-diffusion models. Comput. Geosci. 25, 1405–1436 (2021). https://doi.org/10.1007/s10596-021-10050-5

    Article  Google Scholar 

  42. Poonoosamy, J., Wanner, C., Alt Epping, P., Águila, J.F., Samper, J., Montenegro, L., Xie, M., Mayer, K.U., Mäder, U., Van Loon, L.R., Kosakowski, G.: Benchmarking of reactive transport codes for 2D simulations with mineral dissolution-precipitation reactions and feedback on transport parameters. Comput. Geosci. 25, 1337–1358 (2021). https://doi.org/10.1007/s10596-018-9793-x

    Article  MathSciNet  Google Scholar 

  43. Hogeweg, S., Strobel, G., Hagemann, B.: Benchmark study for the simulation of underground hydrogen storage operations. Comput. Geosci. 26, 1367–1378 (2022). https://doi.org/10.1007/s10596-022-10163-5

    Article  Google Scholar 

  44. de Hoop, S., Voskov, D., Ahusborde, E., Amaziane, B., Kern, M.: Reactive Multiphase Flow in Porous Media at the Darcy Scale: a Benchmark proposal (2023). https://doi.org/10.5281/zenodo.8319570

  45. Ahusborde, E., Amaziane, B., deHoop, S., El Ossmani, M., Flauraud, E., Hamon, F.P., Kern, M., Socié, A., Su, D., Mayer, K.U., Tóth, M., Voskov, D.: A benchmark study on reactive two-phase flow in porous media: Part II - results and description. Comput. Geosci. (2023) https://doi.org/10.1007/s10596-024-10269-y

  46. Lichtner, P.C.: Continuum Formulation of Multicomponent Multiphase Reactive Transport. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (eds.) Reactive Transport in Porous Media, pp. 1–82. De Gruyter, Berlin, Boston (1996). https://doi.org/10.1515/9781501509797-004

  47. Nghiem, L., Sammon, P., Grabenstetter, J., Ohkuma, H.: Modeling CO2 Storage in Aquifers with a Fully-Coupled Geochemical EOS Compositional Simulator. SPE Improved Oil Recovery Conference, p. 89474 (2004). https://doi.org/10.2118/89474-MS

  48. Kala, K., Voskov, D.: Element balance formulation in reactive compositional flow and transport with parameterization technique. Comput. Geosci. 24(2), 609–624 (2020). https://doi.org/10.1007/s10596-019-9828-y

    Article  MathSciNet  Google Scholar 

  49. Ahusborde, E., Amaziane, B., Id Moulay, M.: High performance computing of 3D reactive multiphase flow in porous media: Application to geological storage of CO\(_2\). Comput. Geosci. 25, 2131–2147 (2021). https://doi.org/10.1007/s10596-021-10082-x

    Article  MathSciNet  Google Scholar 

  50. Bear, J., Cheng, A.H.-D.: Modeling Groundwater Flow and Contaminant Transport. Springer, Heidelberg, New-York (2010). https://doi.org/10.1007/978-1-4020-6682-5

  51. Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294(5), 529–592 (1994). https://doi.org/10.2475/ajs.294.5.529

    Article  ADS  CAS  Google Scholar 

  52. Farshidi, S.F.: Compositional reservoir simulation-based reactive-transport formulations, with application to CO\(_2\) storage in sandstone and ultramafic formations. PhD thesis, Stanford University (2016). https://pangea.stanford.edu/ERE/db/pereports/record_detail.php?filename=Farshidi2016.pdf

  53. Hommel, J., Coltman, E., Class, H.: Porosity-permeability relations for evolving pore space: A review with a focus on (bio-)geochemically altered porous media. Transp. Porous Med. 124, 589–629 (2018). https://doi.org/10.1007/s11242-018-1086-2

    Article  Google Scholar 

  54. Peng, D.-Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1), 59–64 (1976). https://doi.org/10.1021/i160057a011

    Article  CAS  Google Scholar 

  55. Voskov, D.V., Tchelepi, H.A.: Comparison of nonlinear formulations for two-phase multi-component EoS based simulation. J. Pet. Sci. Eng. 82–83, 101–111 (2012). https://doi.org/10.1016/j.petrol.2011.10.012

    Article  CAS  Google Scholar 

  56. Coats, K.H.: An equation of state compositional model. Soc. Pet. Eng. J. 20(05), 363–376 (1980). https://doi.org/10.2118/8284-PA

    Article  CAS  Google Scholar 

  57. Class, H., Helmig, R., Bastian, P.: Numerical simulation of non-isothermal multiphase multicomponent processes in porous media.: 1. an efficient solution technique. Adv. Water Res. 25(5), 533–550 (2002). https://doi.org/10.1016/S0309-1708(02)00014-3

    Article  CAS  Google Scholar 

  58. Lauser, A., Hager, C., Helmig, R., Wohlmuth, B.: A new approach for phase transitions in miscible multi-phase flow in porous media. Adv. Water Res. 34(8), 957–966 (2011). https://doi.org/10.1016/j.advwatres.2011.04.021

    Article  Google Scholar 

  59. Ben Gharbia, I., Flauraud, E.: Study of compositional multiphase flow formulation using complementarity conditions. Oil Gas Sci. Technol. 74, 43 (2019). https://doi.org/10.2516/ogst/2019012

    Article  CAS  Google Scholar 

  60. Abadpour, A., Panfilov, M.: Method of negative saturations for modeling two-phase compositional flow with oversaturated zones. Transp. Porous Media 79(2), 197–214 (2009). https://doi.org/10.1007/s11242-008-9310-0

    Article  CAS  Google Scholar 

  61. Voskov, D.: An extended natural variable formulation for compositional simulation based on tie-line parameterization. Transp. Porous Media 92(3), 541–557 (2012). https://doi.org/10.1007/s11242-011-9919-2

    Article  MathSciNet  Google Scholar 

  62. Michelsen, M.L.: The isothermal flash problem. Part II. Phase-split calculation. Fluid Phase Equilib. 9(1), 21–40 (1982). https://doi.org/10.1016/0378-3812(82)85002-4

    Article  CAS  Google Scholar 

  63. Ahusborde, E., Kern, M., Vostrikov, V.: Numerical simulation of two-phase multicomponent flow with reactive transport in porous media: application to geological sequestration of CO\(_2\). ESAIM: Proc. 50, 21–39 (2015). https://doi.org/10.1051/proc/201550002

  64. Moutte, J., Michel, A., Battaia, G., Parra, T., Garcia, D., Wolf, S.: Arxim, a library for thermodynamic modeling of reactive heterogeneous systems, with applications to the simulation of fluid-rock system. In: 21st Congress of IUPAC. Conference on Chemical Thermodynamic, Tsukuba, Japan (2010)

Download references

Acknowledgements

The work of E. Ahusborde and B. Amaziane has been partly supported by the Carnot ISIFoR Institute, and “la Région Nouvelle-Aquitaine”, France. These supports are gratefully acknowledged. The authors are grateful to E. Flauraud (IFPEN, France) for providing the initial values for the “Extended chemical model” in Section 4.2.2. We wish also to thank all of the teams who took part in the Benchmark presented herein for their very active participation, as well as for a careful reading of the paper: M. El Ossmani (UPPA, France), E. Flauraud (IFPEN, France), F. Hamon (TotalEnergies), A. Socié, K. U. Mayer, D. Su (University of British Columbia, Canada), M. Tóth (University of Heidelberg, Germany). The authors also thank the anonymous reviewers whose comments led to significant improvements to the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Kern.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Molar composition for initial and injection conditions

Appendix: Molar composition for initial and injection conditions

Tables 10, 11, 12, 13, 14 and 15 give the initial and injection composition in terms of molar fraction of individual species and saturation of each phases.

Table 10 Properties based on 1D injection state: \([P, z_{\text {H}_2\text {O}}, z_{\text {CO}_2}, z_{\text {Ca}}, z_{\text {CO}_3}] =[165, 10^{-12}, 1, 10^{-12}, 10^{-12}]\)
Table 11 Properties based on 1D initial state: \([P, z_{\text {H}_2\text {O}}, z_{\text {CO}_2}, z_{\text {Ca}}, z_{\text {CO}_3}] =[95, 0.15, 10^{-12}, 0.075, 0.075]\)
Table 12 Properties based on 2D initial in \(\Omega _2\) state: \([P, z_{\text {H}_2\text {O}}, z_{\text {CO}_2}, z_{\text {Ions}} ] =[95, 0.15, 10^{-12}, 0.15]\)
Table 13 Properties based on 2D initial in \(\Omega _1\) state: \([P, z_{\text {H}2\text {O}}, z_{\text {CO}_2}, z_{\text {Ions}} ] =[95, 0.4, 2.66\times 10^{-12}, 0.4]\)
Table 14 Properties based on 2D injection (water stream) state: \([P, z_{\text {H}_2\text {O}}, z_{\text {CO}_2}, z_{\text {Ions}}] =[95, 1, 2\times 10^{-12}, 10^{-12}]\)
Table 15 Properties based on 2D injection (gas stream) state: \([P, z_{\text {H}_2\text {O}}, z_{\text {CO}_2}, z_{\text {Ions}} ] =[95, 0, 1, 10^{-12}]\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Hoop, S., Voskov, D., Ahusborde, E. et al. A benchmark study on reactive two-phase flow in porous media: Part I - model description. Comput Geosci 28, 175–189 (2024). https://doi.org/10.1007/s10596-024-10268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-024-10268-z

Keywords

Navigation