Skip to main content
Log in

An innovative geostatistical sediment trend analysis using geochemical data to highlight sediment sources and transport

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

To study current marine sedimentary processes and depending on the field of application, two principal approaches exist. The first is favoured by geochemists who increasingly use GIS (Geographic Information System) methodology combined with multivariate analysis (most often Principal Component Analysis and Cluster Analysis) applied to a geochemistry dataset, to analyse the spatial distribution of the chemical elements. The interpretation of results can remain complex, and the implementation of chemical elements is limited. The second performed for sedimentary studies considers three granulometric parameters (mean, sorting and skewness) that are frequently used, which are processed by Grain Size Trend Analysis (GSTA) approach, to assess the vectors of sedimentary transport. In the current study, these two distinct approaches are combined to propose a new methodology, integrating the geochemical data into a GSTA model, to assess concentration gradients. This adapted GSTA approach, named “GSTA*”, has been tested on an existing dataset obtained from study in the eastern part of the Bay of Seine (Normandy, France) in an anthropogenic context (presence of a dumping site) to highlight the sediment dynamic processes. The results of the “classical” GSTA approach performed with granulometric parameters were compared with those from the innovative GSTA* approach, using initially one element, Total Organic Carbon (TOC), and subsequently, three combined chemical elements, Total Organic Carbon, Calcium and Silicium (TOC, Ca and Si). The suitability of geochemical tracers in the study of coastal sedimentary dynamic and anthropogenic disturbance, according to concentration gradients is highlighted. The GSTA* approach confirmed previous observations by Baux et al. [1] observations and enabled the identification of new short-scale processes and to determine sediment sources. It is a robust, non-subjective and informative methodology that can improve the interpretation of sediment sources and transport.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baux, N., Murat, A., Faivre, Q., Lesourd, S., Poizot, E., Méar, Y., Brasselet, S., Dauvin, J.-C.: Sediment dynamic equilibrium, a key for assessing a coastal anthropogenic disturbance using geochemical tracers: application to the eastern part of the bay of seine. Cont. Shelf Res. 175, 87–98 (2019). https://doi.org/10.1016/j.csr.2019.02.002

    Article  Google Scholar 

  2. Hopke, P.K., Lamb, R.E., Natusch, D.F.S.: Multielemental characterization of urban roadway dust. Environ. Sci. Technol. 14, 164–172 (1980). https://doi.org/10.1021/es60162a006

    Article  Google Scholar 

  3. Vogt, N.B., Brakstad, F., Thrane, K., Nordenson, S., Krane, J., Aamot, E., Kolset, K., Esbensen, K., Steinnes, E.: Polycyclic aromatic hydrocarbons in soil and air: statistical analysis and classification by the SIMCA method. Environ. Sci. Technol. 21, 35–44 (1987). https://doi.org/10.1021/es00155a003

    Article  Google Scholar 

  4. Pearson, K.: On lines and planes of closet fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 (1901)

    Article  Google Scholar 

  5. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441 (1933). https://doi.org/10.1037/h0071325

    Article  Google Scholar 

  6. Syms, C.: Principal components analysis. In: Jørgensen, S.E., Fath, B.D. (eds.) Encyclopedia of Ecology, pp. 2940–2949. Academic Press, Oxford (2008). https://doi.org/10.1016/B978-008045405-4.00538-3

    Chapter  Google Scholar 

  7. Lewis, P.D., Menzies, G.E.: Vibrational spectra, principal components analysis and the horseshoe effect. Vib. Spectrosc. 81, 62–67 (2015). https://doi.org/10.1016/j.vibspec.2015.10.002

    Article  Google Scholar 

  8. Lee, C.S., Li, X., Shi, W., Cheung, S.C., Thornton, I.: Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Sci. Total Environ. 356, 45–61 (2006). https://doi.org/10.1016/j.scitotenv.2005.03.024

    Article  Google Scholar 

  9. Davis, H.T., Marjorie Aelion, C., McDermott, S., Lawson, A.B.: Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environ. Pollut. 157, 2378–2385 (2009). https://doi.org/10.1016/j.envpol.2009.03.021

    Article  Google Scholar 

  10. Henriksson, S., Hagberg, J., Bäckström, M., Persson, I., Lindström, G.: Assessment of PCDD/fs levels in soil at a contaminated sawmill site in Sweden – a GIS and PCA approach to interpret the contamination pattern and distribution. Environ. Pollut. 180, 19–26 (2013). https://doi.org/10.1016/j.envpol.2013.05.002

    Article  Google Scholar 

  11. Borges, R.C., Caldas, V.G., Filho, F.F.L.S., Ferreira, M.M., Lapa, C.M.F.: Use of GIS for the evaluation of heavy metal contamination in the Cunha Canal watershed and west of the Guanabara Bay, Rio de Janeiro. RJ. Mar. Pollut. Bull. 89, 75–84 (2014). https://doi.org/10.1016/j.marpolbul.2014.10.033

    Article  Google Scholar 

  12. Velasco, V., Tubau, I., Vázquez-Suñè, E., Gogu, R., Gaitanaru, D., Alcaraz, M., Serrano-Juan, A., Fernàndez-Garcia, D., Garrido, T., Fraile, J., Sanchez-Vila, X.: GIS-based hydrogeochemical analysis tools (QUIMET). Comput. Geosci. 70, 164–180 (2014). https://doi.org/10.1016/j.cageo.2014.04.01313

    Article  Google Scholar 

  13. El-Amier, Y.A., Elnaggar, A.A., El-Alfy, M.A.: Evaluation and mapping spatial distribution of bottom sediment heavy metal contamination in Burullus Lake. Egypt. Egypt. J. Basic Appl. Sci. 4, 55–66 (2017). https://doi.org/10.1016/j.ejbas.2016.09.005

    Article  Google Scholar 

  14. Hou, D., O’Connor, D., Nathanail, P., Tian, L., Ma, Y.: Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review. Environ. Pollut. 231, 1188–1200 (2017). https://doi.org/10.1016/j.envpol.2017.07.021

    Article  Google Scholar 

  15. Bodrud-Doza, M., Bhuiyan, M.A.H., Islam, S.M.D.-U., Rahman, M.S., Haque, M.M., Fatema, K.J., Ahmed, N., Rakib, M.A., Rahman, M.A.: Hydrogeochemical investigation of groundwater in Dhaka City of Bangladesh using GIS and multivariate statistical techniques. Groundw. Sustain. Dev. 8, 226–244 (2019). https://doi.org/10.1016/j.gsd.2018.11.008

    Article  Google Scholar 

  16. Facchinelli, A., Sacchi, E., Mallen, L.: Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 114, 313–324 (2001). https://doi.org/10.1016/S0269-7491(00)00243-8

    Article  Google Scholar 

  17. Romic, M., Romic, D.: Heavy metals distribution in agricultural topsoils in urban area. Environ. Geol. 43, 795–805 (2003). https://doi.org/10.1007/s00254-002-0694-9

    Article  Google Scholar 

  18. Duman, M., Duman, Ş., Lyons, T.W., Avcı, M., İzdar, E., Demirkurt, E.: Geochemistry and sedimentology of shelf and upper slope sediments of the south-Central Black Sea. Mar. Geol. 227, 51–65 (2006). https://doi.org/10.1016/j.margeo.2005.11.009

    Article  Google Scholar 

  19. Yesilonis, I.D., Pouyat, R.V., Neerchal, N.K.: Spatial distribution of metals in soils in Baltimore, Maryland: role of native parent material, proximity to major roads, housing age and screening guidelines. Environ. Pollut. 156, 723–731 (2008). https://doi.org/10.1016/j.envpol.2008.06.010

    Article  Google Scholar 

  20. Lu, A., Wang, J., Qin, X., Wang, K., Han, P., Zhang, S.: Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing. China. Sci. Total Environ. 425, 66–74 (2012). https://doi.org/10.1016/j.scitotenv.2012.03.003

    Article  Google Scholar 

  21. Jin, Y., O’Connor, D., Ok, Y.S., Tsang, D.C.W., Liu, A., Hou, D.: Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ. Int. 124, 320–328 (2019). https://doi.org/10.1016/j.envint.2019.01.024

    Article  Google Scholar 

  22. Li, T., Sun, G., Yang, C., Liang, K., Ma, S., Huang, L., Luo, W.: Source apportionment and source-to-sink transport of major and trace elements in coastal sediments: combining positive matrix factorization and sediment trend analysis. Sci. Total Environ. 651, 344–356 (2019). https://doi.org/10.1016/j.scitotenv.2018.09.198

    Article  Google Scholar 

  23. Mc Laren, P.: An interpretation of trends in grain size measures. J. Sediment. Res. 51, 611–624 (1981). https://doi.org/10.1306/212F7CF2-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  24. Gao, S., Collins, M.B.: A critique of the. J. Sediment. Res. 61, (1991) https://archives.datapages.com/data/sepm/journals/v59-62/data/061/061001/0143.htm

  25. Poizot, E., Mear, Y., Thomas, M., Garnaud, S.: The application of geostatistics in defining the characteristic distance for grain size trend analysis. Comput. Geosci. 32, 360–370 (2006). https://doi.org/10.1016/j.cageo.2005.06.023

    Article  Google Scholar 

  26. Poizot, E., Méar, Y.: Using a GIS to enhance grain size trend analysis. Environ. Model. Softw. 25, 513–525 (2010). https://doi.org/10.1016/j.envsoft.2009.10.002

    Article  Google Scholar 

  27. Pedreros, R., Howa, H.L., Michel, D.: Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas. Mar. Geol. 135, 35–49 (1996). https://doi.org/10.1016/S0025-3227(96)00042-4

    Article  Google Scholar 

  28. Asselman, N.E.M.: Grain-size trends used to assess the effective discharge for floodplain sedimentation, river Waal, the Netherlands. J. Sediment. Res. 69, 51–61 (1999). https://doi.org/10.2110/jsr.69.51

    Article  Google Scholar 

  29. Mallet, C., Howa, H., Garlan, T., Sottolichio, A., Le Hir, P., Michel, D.: Utilisation of numerical and statistical techniques to describe sedimentary circulation patterns in the mouth of the Gironde estuary. Comptes Rendus Académie Sci. - Ser. IIA - Earth Planet. Sci. 331, 491–497 (2000). https://doi.org/10.1016/S1251-8050(00)01437-3

    Article  Google Scholar 

  30. Vanwesenbeeck, V., Lanckneus, J.: Residual sediment transport paths on a tidal sand Bank: a comparison between the modified McLaren model and Bedform analysis. J. Sediment. Res. 70, 470–477 (2000). https://doi.org/10.1306/2DC40920-0E47-11D7-8643000102C1865D

    Article  Google Scholar 

  31. Friend, P.L., Velegrakis, A.F., Weatherston, P.D., Collins, M.B.: Sediment transport pathways in a dredged ria system, Southwest England. Estuar. Coast. Shelf Sci. 67, 491–502 (2006). https://doi.org/10.1016/j.ecss.2005.12.005

    Article  Google Scholar 

  32. Kumar, P.S.R., Dwarakish, G.S., Nujuma, N., Gopinath, D.I.: Long term study of sediment dynamics along Mangalore coast. West Coast India Using Sediment Trend Analysis. Aquat. Procedia. 4, 1545–1552 (2015). https://doi.org/10.1016/j.aqpro.2015.02.200

    Article  Google Scholar 

  33. Yamashita, S., Naruse, H., Nakajo, T.: Reconstruction of sediment-transport pathways on a modern microtidal coast by a new grain-size trend analysis method. Prog. Earth Planet. Sci. 5, 7 (2018). https://doi.org/10.1186/s40645-018-0166-9

    Article  Google Scholar 

  34. Oliveira, A., Rocha, F., Rodrigues, A., Jouanneau, J., Dias, A., Weber, O., Gomes, C.: Clay minerals from the sedimentary cover from the northwest Iberian shelf. Prog. Oceanogr. 52, 233–247 (2002). https://doi.org/10.1016/S0079-6611(02)00008-3

    Article  Google Scholar 

  35. Dubrulle, C., Lesueur, P., Boust, D., Dugué, O., Poupinet, N., Lafite, R.: Source discrimination of fine-grained deposits occurring on marine beaches: the Calvados beaches (eastern bay of the seine, France). Estuar. Coast. Shelf Sci. 72, 138–154 (2007). https://doi.org/10.1016/j.ecss.2006.10.021

    Article  Google Scholar 

  36. Petrişor, A.-I., Ianoş, I., Iurea, D., Văidianu, M.-N.: Applications of principal component analysis integrated with GIS. Procedia Environ. Sci. 14, 247–256 (2012). https://doi.org/10.1016/j.proenv.2012.03.024

    Article  Google Scholar 

  37. Jerosch, K.: Geostatistical mapping and spatial variability of surficial sediment types on the Beaufort shelf based on grain size data. J. Mar. Syst. 127, 5–13 (2013). https://doi.org/10.1016/j.jmarsys.2012.02.013

    Article  Google Scholar 

  38. Avoine, J., Allen, G.P., Nichols, M., Salomon, J.C., Larsonneur, C.: Suspended-sediment transport in the seine estuary, France: effect of man-made modifications on estuary—shelf sedimentology. Mar. Geol. 40, 119–137 (1981)

    Article  Google Scholar 

  39. Larsonneur, C., Auffret, J., Avoine, J.: Etudes hydrosédimentaires en Baie de Seine. (1985)

  40. Le Hir, P., Ficht, A., Jacinto, R.S., Lesueur, P., Dupont, J.-P., Lafite, R., Brenon, I., Thouvenin, B., Cugier, P.: Fine sediment transport and accumulations at the mouth of the seine estuary (France). Estuaries. 24, 950–963 (2001)

    Article  Google Scholar 

  41. Larsonneur, C.: Manche centrale et baie de Seine : géologie du substratum et des dépôts meubles, (1971)

  42. Méar, Y., Poizot, E., Murat, A., Lesueur, P., Thomas, M.: Fine-grained sediment spatial distribution on the basis of a geostatistical analysis: example of the eastern bay of the seine (France). Cont. Shelf Res. 26, 2335–2351 (2006). https://doi.org/10.1016/j.csr.2006.06.009

    Article  Google Scholar 

  43. Lesourd, S., Lesueur, P., Fisson, C., Dauvin, J.-C.: Sediment evolution in the mouth of the seine estuary (France): a long-term monitoring during the last 150years. Comptes Rendus Geosci. 348, 442–450 (2016). https://doi.org/10.1016/j.crte.2015.08.001

    Article  Google Scholar 

  44. Brylinski, J.-M., Lagadeuc, Y., Gentilhomme, V., Dupont, J.P., Lafite, R., Dupeuble, P.-A., Huault, M.-F., Auger, Y., Puskaric, E., Wartel, M., Cabioch, L.: Le"fleuve côtier" : un phénomène hydrologique important en Manche oientale : Exemple du Pas-de-Calais. Oceanol. ACTA. SP, 197–203 (1991)

  45. Crevel, L.: La dynamique sedimentaire en Baie de Seine nord-orientale, fluctuations et evolution de la couverture meuble. In: La Baie de Seine. Colloque National du CNRS, 24–26 avril 1985. pp. 193–200 (1985)

  46. Méar, Y., Poizot, E., Murat, A., Beryouni, K., Baux, N., Dauvin, J.-C.: Improving the monitoring of a dumping site in a dynamic environment. Example of the Octeville site (Bay of Seine, English Channel). Mar. Pollut. Bull. 129, 425–437 (2018). https://doi.org/10.1016/j.marpolbul.2017.10.011

  47. Brasselet, S.: Dragages d’entretien du Grand Port Maritime du Havre. Arrêté interpréfectoral du 26/10/2009 : Renouvellement de l’autorisation de dragage et de l’immersion des produits de dragages d’entretien du GPMH. Demande de renouvellement. Grand Port Maritime du Havre (GPMH) - Service Accès et Environnement Maritime (2014)

  48. Reynolds, R.C.: Potassium-rubidium ratios aud polymorphism in illites and microclines from the clay size fractions of proterozoic carbonate rocks. Geochim. Cosmochim. Acta. 27, 1097–1112 (1963). https://doi.org/10.1016/0016-7037(63)90092-9

  49. Matheron, G.: Les variables régionalisées et leur estimation. Masson Paris Fr. 1–305 (1965)

  50. Renard, D., Bez, N., Desassis, N., Beucher, H., Ors, F., Freulon, X.: RGeostats: Geostatistical Package version 11.1.1. (2020)

  51. Poizot, E., Méar, Y., Biscara, L.: Sediment trend analysis through the variation of granulometric parameters: a review of theories and applications. Earth-Sci. Rev. 86, 15–41 (2008). https://doi.org/10.1016/j.earscirev.2007.07.004

    Article  Google Scholar 

  52. Oliver, M.A., Webster, R.: Kriging: a method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 4, 313–332 (1990). https://doi.org/10.1080/02693799008941549

    Article  Google Scholar 

  53. McLaren, P., Bowles, D.: The effects of sediment transport on grain-size distributions. J. Sediment. Res. 55, 457–470 (1985). https://doi.org/10.1306/212F86FC-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  54. Gao, S., Collins, M.B.: Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors.” Sediment. Geol. 81, 47–60 (1992). https://doi.org/10.1016/0037-0738(92)90055-V

  55. Poizot, E., Méar, Y.: eCSedtrend: a new software to improve sediment trend analysis. Comput. Geosci. 34, 827–837 (2008). https://doi.org/10.1016/j.cageo.2007.05.022

    Article  Google Scholar 

  56. Okada, T., Larcombe, P., Mason, C.: Estimating the spatial distribution of dredged material disposed of at sea using particle-size distributions and metal concentrations. Mar. Pollut. Bull. 58, 1164–1177 (2009). https://doi.org/10.1016/j.marpolbul.2009.03.023

    Article  Google Scholar 

  57. Paatero, P., Tapper, U., Aalto, P., Kulmala, M.: Matrix factorization methods for analysing diffusion battery data. J. Aerosol Sci. 22, S273–S276 (1991). https://doi.org/10.1016/S0021-8502(05)80089-8

    Article  Google Scholar 

  58. Song, X.-H., Polissar, A.V., Hopke, P.K.: Sources of fine particle composition in the northeastern US. Atmos. Environ. 35, 5277–5286 (2001). https://doi.org/10.1016/S1352-2310(01)00338-7

    Article  Google Scholar 

  59. Polissar, A.V., Hopke, P.K., Harris, J.M.: Source regions for atmospheric aerosol measured at Barrow. Alaska. Environ. Sci. Technol. 35, 4214–4226 (2001). https://doi.org/10.1021/es0107529

    Article  Google Scholar 

  60. Song, Y., Xie, S., Zhang, Y., Zeng, L., Salmon, L.G., Zheng, M.: Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Sci. Total Environ. 372, 278–286 (2006). https://doi.org/10.1016/j.scitotenv.2006.08.041

  61. Khlaifi, A.: Estimation des sources de pollution atmosphérique par modélisation inverse, (2007)

  62. Gao, S., Collins, M.B.: Analysis of grain size trends, for defining sediment transport pathways in marine environments. J. Coast. Res. 10, 70–78 (1994)

    Google Scholar 

  63. Gao, S., Collins, M.B.: The use of grain size trends in marine sediment dynamics: a review. Chin. J. Oceanol. Limnol. 19, 265–271 (2001). https://doi.org/10.1007/BF02850664

    Article  Google Scholar 

  64. Le Roux, J.P., Rojas, E.M.: Sediment transport patterns determined from grain size parameters: overview and state of the art. Sediment. Geol. 202, 473–488 (2007). https://doi.org/10.1016/j.sedgeo.2007.03.014

    Article  Google Scholar 

  65. McLaren, P., Hill, S.H., Bowles, D.: Deriving transport pathways in a sediment trend analysis (STA). Sediment. Geol. 202, 489–498 (2007). https://doi.org/10.1016/j.sedgeo.2007.03.011

    Article  Google Scholar 

  66. Méar, Y., Poizot, E., Murat, A., Beryouni, K., Baux, N., Dauvin, J.-C.: Improving the monitoring of a dumping site in a dynamic environment. Example of the Octeville site (Bay of Seine, English Channel). Mar. Pollut. Bull. (2017). https://doi.org/10.1016/j.marpolbul.2017.10.011

Download references

Acknowledgments

The authors are grateful to research RIN (“Réseaux d’Intérêts Normands”) for their funding of the SELINe project. We wish to thank to the “Grand Port Maritime du Havre” and the crews of the two ships, “Le Marais” and the “Côtes de la Manche”. We thank all the staffs for assistance in technical operations. The authors would like to express their gratitude to Dr. Colin Burton for his detailed correction of the English used in the manuscript. At least, we greatly thank the anonymous reviewer whose comments and suggestions helped to improve and clarify this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwendoline Gregoire.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Aim: Adaptation of existing GSTA approach with geochemical parameters.

• Study of sedimentary processes, sources and transport.

• New methodology enabled the identification of new short-scale processes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baux, N., Murat, A., Poizot, E. et al. An innovative geostatistical sediment trend analysis using geochemical data to highlight sediment sources and transport. Comput Geosci 26, 263–278 (2022). https://doi.org/10.1007/s10596-021-10123-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10123-5

Keywords

Navigation