Skip to main content
Log in

The LBPM software package for simulating multiphase flow on digital images of porous rocks

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Direct pore scale simulations of two-fluid flow on digital rock images provide a promising tool to understand the role of surface wetting phenomena on flow and transport in geologic reservoirs. We present computational protocols that mimic conventional special core analysis laboratory (SCAL) experiments, which are implemented within the open source LBPM software package. Protocols are described to simulate unsteady displacement, steady-state flow at fixed saturation, and to mimic centrifuge experiments. These methods can be used to infer relative permeability and capillary curves, and otherwise understand two-fluid flow behavior based on first principles. Morphological tools are applied to assess image resolution, establish initial conditions, and instantiate surface wetting maps based on the distribution of fluids. Internal analysis tools are described that measure essential aspects of two-fluid flow, including fluid connectivity and surface measures, which are used to track transient aspects of the flow behavior as they occur during simulation. Computationally efficient workflows are developed by combining these components with a two-fluid lattice Boltzmann model to define hybrid methods that can accelerate computations by using morphological tools to incrementally evolve the pore-scale fluid distribution. We show that the described methods can be applied to recover expected trends due to the surface wetting properties based on flow simulation in Benntheimer sandstone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LBPM software package. https://github.com/opm/lbpm (2020)

  2. Open Porous Media Project: https://opm-project.org/ (2020)

  3. Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Adv. Water Resour. 51, 197 (2013). https://doi.org/10.1016/j.advwatres.2012.03.003

    Article  Google Scholar 

  4. Bear, J.: Dynamics of fluids in porous media. Dover Civil and Mechanical Engineering Series. https://books.google.com/books?id=lurrmlFGhTEC (1988)

  5. Mualem, Y.: Water Resources Res. 12 (3), 513 (1976). https://doi.org/10.1029/WR012i003p00513

    Article  Google Scholar 

  6. Dalton, L.: Bentheimer and nugget residual saturation micro-computed tomography data. http://www.digitalrocksportal.org/projects/218. https://doi.org/10.17612/P73H4B (2019)

  7. Ramstad, T.: Bentheimer micro-CT with waterflood. http://www.digitalrocksportal.org/projects/172. https://doi.org/10.17612/P7795W (2018)

  8. Wildenschild, D., Sheppard, A.P.: Adv. Water Resour. 51, 217 (2013). https://doi.org/10.1016/j.advwatres.2012.07.018

    Article  Google Scholar 

  9. Darcy, H.: Les Fontaines Publiques De La Ville De Dijon. Victor Dalmont, Paris. https://books.google.com/books?id=42EUAAAAQAAJ (1856)

  10. Jadhunandan, P.P., Morrow, N.R.: SPE Reserv. Eng. 10(1), 22597 (1995). https://doi.org/10.2118/22597-PA

    Article  Google Scholar 

  11. Ramstad, T., Idowu, N., Nardi, C., Øren, P.E.: Transp Porous Media 94(2), 487 (2012). https://doi.org/10.1007/s11242-011-9877-8

    Article  Google Scholar 

  12. Adamson, A., Gast, A: Physical Chemistry of Surfaces. Wiley, New Jersey (1997)

    Google Scholar 

  13. Muccino, J.C., Gray, W.G., Ferrand, L.A.: Rev. Geophys. 36(3), 401 (1998). https://doi.org/10.1029/98RG00878

    Article  Google Scholar 

  14. Lenormand, R., Zarcone, C.: Transp. Porous Media 4(6), 599 (1989). https://doi.org/10.1007/BF00223630

    Article  Google Scholar 

  15. Erpelding, M., Sinha, S., Tallakstad, K.T., Hansen, A., Flekkoy, E.G., Maloy, K.J.: Phys. Rev. E. 88(5). https://doi.org/10.1103/PhysRevE.88.053004 (2013)

  16. Dye, A.L., McClure, J.E., Miller, C.T., Gray, W.G.: Phys. Rev. E 87, 033012 (2013). https://doi.org/10.1103/PhysRevE.87.033012

    Article  Google Scholar 

  17. McClure, J., Gray, W., Miller, C.: Transp. Porous Media 84, 535 (2010). https://doi.org/10.1007/s11242-009-9518-7

    Article  Google Scholar 

  18. Latva-Kokko, M., Rothman, D.: Phys. Rev. E. 71(5, Part 2). https://doi.org/10.1103/PhysRevE.71.056702 (2005)

  19. Latva-Kokko, M., Rothman, D.H.: Phys. Rev. Lett. 98(25). https://doi.org/10.1103/PhysRevLett.98.254503 (2007)

  20. Wardlaw, N., Li, Y.: Transp. Porous Media 3(1), 17 (1988). https://doi.org/10.1007/BF00222684

    Article  Google Scholar 

  21. Jerauld, G., Salter, S.: Transp. Porous Media 5 (2), 103 (1990). https://doi.org/10.1007/BF00144600

    Article  Google Scholar 

  22. Vogel, H.: In: Mecke, K., Stoyan, D. (eds.) Morphology of Condensed matter: Physics and Geometry of Spatially Complex Systems, Lecture Notes in Physics. Lecture Notes in physics, vol. 600, pp. 75–92. 2nd International Wuppertal Workshop on Statistical Physics and Spatial Statistics, Univ. Wuppertal, Wuppertal, Germany March 05-09, 2001, vol. 600 (2002)

  23. Schlueter, S., Sheppard, A., Brown, K., Wildenschild, D.: Water Resources Res. 50 (4), 3615 (2014). https://doi.org/10.1002/2014WR015256

    Article  Google Scholar 

  24. Lindquist, W., Venkatarangan, A.: Phys. Chem. Earth Part A-Solid Earth Geodesy 24(7), 593 (1999). https://doi.org/10.1016/S1464-1895(99)00085-X

    Article  Google Scholar 

  25. Lindquist, W., Venkatarangan, A., Dunsmuir, J., Wong, T.: J. Geophys. Res.-Solid Earth 105(B9), 21509 (2000). https://doi.org/10.1029/2000JB900208

    Article  Google Scholar 

  26. Liu, H., Kang, Q., Leonardi, C.R., Schmieschek, S., Narvaez, A., Jones, B.D., Williams, J.R., Valocchi, A.J., Harting, J.: Comput. Geosci. 20(4), 777 (2016). https://doi.org/10.1007/s10596-015-9542-3

    Article  Google Scholar 

  27. Bondino, I., Hamon, G., Kallel, W., Kachuma, D.: Petrophysics 54(6, SI), 538 (2013). SCA Symposium, Aberdeen, SCOTLAND, AUG 27–30, 2012

    Google Scholar 

  28. Jiang, F., Tsuji, T.: Water Resour. Res. 53(1), 11–32 (2017)

    Article  Google Scholar 

  29. Joekar-Niasar, V., van Dijke, M.I.J., Hassanizadeh, S.M.: Transport in Porous Media 94(2, SI), 461 (2012). https://doi.org/10.1007/s11242-012-0047-4

    Article  Google Scholar 

  30. Geller, S., Krafczyk, M., Tolke, J., Turek, S., Hron, J.: Comput. Fluids 35(8-9), 888 (2006). https://doi.org/10.1007/3-540-34596-5_11

    Article  Google Scholar 

  31. Jiang, F., Tsuji, T.: Int. J. Greenhouse Gas Control 49, 179–191 (2016). https://doi.org/10.1016/j.ijggc.2016.03.006

    Article  Google Scholar 

  32. Jiang, F., Tsuji, T.: Water Resour. Res. 51(3), 1710–1722 (2015)

    Article  Google Scholar 

  33. Liu, H., Valocchi, A.J., Werth, C., Kang, Q., Oostrom, M.: Adv. Water Resour. 73, 144 (2014). https://doi.org/10.1016/j.advwatres.2014.07.010

    Article  Google Scholar 

  34. Ramstad, T., Oren, P.E., Bakke, S.: SPE J. 15(4), 923 (2010). https://doi.org/10.2118/124617-PA

    Article  Google Scholar 

  35. Yiotis, A.G., Psihogios, J., Kainourgiakis, M.E., Papaioannou, A., Stubos, A.K.: Colloids Surfaces A-Physiochem. Eng. Aspects 300(1-2, SI), 35 (2007). https://doi.org/10.1016/j.colsurfa.2006.12.045. 4th International TRI/Princeton Workshop, Princeton, NJ, JUN 21-23, 2006

    Article  Google Scholar 

  36. Huang, H., Li, Z., Liu, S., Lu, X.Y.: Int. J. Numer. Methods Fluids 61(3), 341 (2009). https://doi.org/10.1002/fld.1972

    Article  Google Scholar 

  37. Alpak, F.O., Berg, S., Zacharoudiou, I.: Adv. Water Resour. 122, 49 (2018). https://doi.org/10.1016/j.advwatres.2018.09.001

    Article  Google Scholar 

  38. Shi, Y., Tang, G.H.: Int. J. Heat Fluid Flow 73, 101 (2018). https://doi.org/10.1016/j.ijheatfluidflow.2018.07.010

    Article  Google Scholar 

  39. Ramstad, T., Kristoffersen, A., Ebeltoft, E.: E3S Web of Conferences. 146, 01002. https://doi.org/10.1051/e3sconf/202014601002 (2020)

  40. Xu, M., Liu, H.: Europ. Phys. J. E. 41(10). https://doi.org/10.1140/epje/i2018-11735-3 (2018)

  41. Li, Z., Galindo-Torres, S., Yan, G., Scheuermann, A., Li, L.: Adv. Water Resour. 116, 153 (2018). https://doi.org/10.1016/j.advwatres.2018.04.009

    Article  Google Scholar 

  42. Xie, J.F., He, S., Zu, Y.Q., Lamy-Chappuis, B., Yardley, B.W.D.: Heat Mass Transf. 53(8), 2637 (2017). https://doi.org/10.1007/s00231-017-2007-6

    Article  Google Scholar 

  43. Zhao, H., Ning, Z., Kang, Q., Chen, L., Zhao, T.: Int. Commun. Heat and Mass Transfer 85, 53 (2017). https://doi.org/10.1016/j.icheatmasstransfer.2017.04.020

    Article  Google Scholar 

  44. Mahmoudi, S., Mohammadzadeh, O., Hashemi, A., Kord, S.: J. Petroleum Explor. Production Technol. 7(1), 235 (2017). https://doi.org/10.1007/s13202-016-0256-4

    Article  Google Scholar 

  45. Goel, G., Abidoye, L.K., Chahar, B.R., Das, D.B.: Environ. Fluid Mech. 16(5), 945 (2016). https://doi.org/10.1007/s10652-016-9459-y

    Article  Google Scholar 

  46. Zhang, D., Papadikis, K., Gu, S.: Adv. Water Resour. 95(SI), 61 (2016). https://doi.org/10.1016/j.advwatres.2015.12.015

    Article  Google Scholar 

  47. Apourvari, S.N., Arns, C.H.: Adv. Water Resour. 95(SI), 161 (2016). https://doi.org/10.1016/j.advwatres.2015.11.005

    Article  Google Scholar 

  48. Dou, Z., Zhou, Z.F.: Int. J. Heat Fluid Flow 42, 23 (2013). https://doi.org/10.1016/j.ijheatfluidflow.2013.01.020

    Article  Google Scholar 

  49. Ramstad, T., Idowu, N., Nardi, C., Øren, P.E.: Transport in Porous Media 94(2, SI), 487 (2012). https://doi.org/10.1007/s11242-011-9877-8

    Article  Google Scholar 

  50. Ghassemi, A., Pak, A.: J. Pet. Sci. Eng. 77(1), 135 (2011). https://doi.org/10.1016/j.petrol.2011.02.007

    Article  Google Scholar 

  51. Hao, L., Cheng, P.: Int. J. Heat Mass Transf. 53(9-10), 1908 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.066

    Article  Google Scholar 

  52. Huang, H., Lu, X.Y.: Phys. Fluids 21(9). https://doi.org/10.1063/1.3225144 (2009)

  53. Hussain, F., Pinczewski, W.V., Cinar, Y., Arns, J.Y., Arns, C.H., Turner, M.L.: Transp. Porous Media 104(1), 91 (2014). https://doi.org/10.1007/s11242-014-0322-7

    Article  Google Scholar 

  54. Landry, C.J., Karpyn, Z.T., Ayala, O.: Water Resour. Res. 50(5), 3672 (2014). https://doi.org/10.1002/2013WR015148

    Article  Google Scholar 

  55. Narvaez, A., Zauner, T., Raischel, F., Hilfer, R., Harting, J: J. Stat. Mechan.-Theory Exper. https://doi.org/10.1088/1742-5468/2010/11/P11026 (2010)

  56. Jeong, N.: Transp. Porous Media 83(2), 271 (2010). https://doi.org/10.1007/s11242-009-9438-6

    Article  Google Scholar 

  57. Maier, R.S., Bernard, R.S.: J. Comput. Phys. 229(2), 233 (2010). https://doi.org/10.1016/j.jcp.2009.09.013

    Article  Google Scholar 

  58. Tölke, J., Freudiger, S., Krafczyk, M.: Comput. Fluids 35(8-9), 820 (2006). https://doi.org/10.1016/j.compfluid.2005.08.010. 1st International Conference for Mesoscopic Methods in Engineering and Science (ICMMES), Tech Univ Braunschweig, Braunschweig, GERMANY, JUL 25, 2004-JUL 30, 2005

    Article  Google Scholar 

  59. Ahrenholz, B., Tölke, J., Lehmann, P., Peters, A., Kaestner, A., Krafczyk, M., Durner, W.: Adv. Water Resour. 31(9), 1151 (2008). https://doi.org/10.1016/j.advwatres.2008.03.009

    Article  Google Scholar 

  60. Tölke, J., Krafczyk, M., Rank, E.: J. Stat. Phys. 107(1-2), 573 (2002). https://doi.org/10.1023/A:1014551813787

    Article  Google Scholar 

  61. McClure, J., Prins, J., Miller, C.: Comput. Phys. Commun. 185(7), 1865 (2014). https://doi.org/10.1016/j.cpc.2014.03.012. http://www.sciencedirect.com/science/article/pii/S0010465514000927

    Article  Google Scholar 

  62. Lallemand, P., Luo, L.S.: Phys. Rev. E. 61(6), 6546 (2000)

    Article  Google Scholar 

  63. d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.S.: Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 360(1792), 437. https://doi.org/10.1098/rsta.2001.0955http://rsta.royalsocietypublishing.org/content/360/1792/437 (2002)

  64. Ginzburg, I., d’Humières, D.: Phys. Rev. E 68, 066614 (2003). https://doi.org/10.1103/PhysRevE.68.066614

    Article  Google Scholar 

  65. Graue, A., Ferno, M.A., Aspenes, E., Needham, R.: J. Pet. Sci. Eng. 94-95, 89 (2012). https://doi.org/10.1016/j.petrol.2012.06.020

    Article  Google Scholar 

  66. Saraji, S., Goual, L., Piri, M., Plancher, H.: Langmuir 29(23), 6856 (2013). https://doi.org/10.1021/la3050863

    Article  Google Scholar 

  67. Andrew, M., Bijeljic, B., Blunt, M.J.: Adv. Water Resour. 68, 24 (2014). https://doi.org/10.1016/j.advwatres.2014.02.014

    Article  Google Scholar 

  68. Rücker, M., Bartels, W.B., Bultreys, T., Boone, M., Singh, K., Garfi, G., Scanziani, A., Spurin, C., Yesufu-Rufai, S., Krevor, S., Blunt, M.J., Wilson, O., Mahani, H., Cnudde, V., Luckham, P., Georgiadis, A., Berg, S.: Petrophysics 61(2), 2020 (2020)

    Google Scholar 

  69. Zhao, J., Kang, Q., Yao, J., Viswanathan, H., Pawar, R., Zhang, L., Sun, H.: Water Resour. Res. 54(2), 1295 (2018). https://doi.org/10.1002/2017WR021443

    Article  Google Scholar 

  70. Landry, C.J., Karpyn, Z.T., Ayala, O.: Water Resour. Res. 50(5), 3672 (2014). https://doi.org/10.1002/2013WR015148

    Article  Google Scholar 

  71. Huang, H., Thorne, D.T. Jr., Schaap, M.G., Sukop, M.C.: Phys. Rev. E 76(6, Part 2). https://doi.org/10.1103/PhysRevE.76.066701 (2007)

  72. Wiklund, H.S., Lindstrom, S.B., Uesaka, T.: Comput. Phys. Commun. 182(10), 2192 (2011). https://doi.org/10.1016/j.cpc.2011.05.019

    Article  Google Scholar 

  73. Schmieschek, S., Harting, J.: Commun. Comput. Phys. 9 (5), 1165 (2011). https://doi.org/10.4208/cicp.201009.271010s. 18th International Conference on Discrete Simulation of Fluid Mechanics (DSFD), Beijing, Peoples R China, Jul 06-10, 2009

    Article  Google Scholar 

  74. Wolf, F.G., dos Santos, L.O.E., Philippi, P.C.: J. Stat. Mechan.-Theory Exper. https://doi.org/10.1088/1742-5468/2009/06/P06008 (2009)

  75. Lee, T., Liu, L.: Phys. Rev. E 78(1, Part 2). https://doi.org/10.1103/PhysRevE.78.017702(2008)

  76. Benzi, R., Biferale, L., Sbragaglia, M., Succi, S., Toschi, F.: Phys. Rev. E 74(2) (2006)

  77. Benzi, R., Biferale, L., Sbragaglia, M., Succi, S., Toschi, F.: J. Fluid Mech. 548, 257 (2006)

    Article  Google Scholar 

  78. Pomeau, Y.: Comptes Rendus Mecanique 330(3), 207 (2002). https://doi.org/10.1016/S1631-0721(02)01445-6

    Article  Google Scholar 

  79. Dhori, P., Slattery, J.: J. Non-Newtonian Fluid Mech. 71 (3), 197 (1997). https://doi.org/10.1016/S0377-0257(97)00007-4

    Article  Google Scholar 

  80. Shikhmurzaev, Y.: J. Fluid Mech. 334, 211 (1997). https://doi.org/10.1017/S0022112096004569

    Article  Google Scholar 

  81. Brochardwyart, F., DeGennes, P.: Adv. Colloid Interface Sci. 39, 1 (1992). https://doi.org/10.1016/0001-8686(92)80052-Y

    Article  Google Scholar 

  82. Seppecher, P.: Int. J. Eng. Sci. 34(9), 977 (1996). https://doi.org/10.1016/0020-7225(95)00141-7

    Article  Google Scholar 

  83. Pooley, C.M., Kusumaatmaja, H., Yeomans, J.M.: Phys. Rev. E 78(5, Part 2). https://doi.org/10.1103/PhysRevE.78.056709 (2008)

  84. Kawasaki, A., Onishi, J., Chen, Y., Ohashi, H.: Comput. Math. Appl. 55(7), 1492 (2008). https://doi.org/10.1016/j.camwa.2007.08.026. 2nd International Conference on Mesoscopic Methods in Engineering and Science (ICMMES), Hong Kong Polytechn Univ, Hong Kong, Peoples R China, Jul 25-29, 2005

    Article  Google Scholar 

  85. Zhao, B., MacMinn, C.W., Primkulov, B.K., Chen, Y., Valocchi, A.J., Zhao, J., Kang, Q., Bruning, K., McClure, J.E., Miller, C.T., Fakhari, A., Bolster, D., Hiller, T., Brinkmann, M., Cueto-Felgueroso, L., Cogswell, D.A., Verma, R., Prodanović, M., Maes, J., Geiger, S., Vassvik, M., Hansen, A., Segre, E., Holtzman, R., Yang, Z., Yuan, C., Chareyre, B., Juanes, R.: Proc. Nat. Acad. Sci. 116(28), 13799 (2019). https://doi.org/10.1073/pnas.1901619116. https://www.pnas.org/content/116/28/13799

    Article  Google Scholar 

  86. Latva-Kokko, M., Rothman, D.: Phys. Rev. E 72(4, Part 2). https://doi.org/10.1103/PhysRevE.72.046701(2005)

  87. Li, Z., McClure, J.E., Middleton, J., Varslot, T., Sheppard, A.P.: Int. J. Numer. Methods Fluids 92(9). https://doi.org/10.1002/fld.4822 (2020)

  88. Zhang, J., Kwok, D.Y.: European Phys. J.-Spec. Topics 171, 45 (2009). https://doi.org/10.1140/epjst/e2009-01010-2. 16th Discrete Simulation of Fluid Dynamics International Conference, Univ Calgary, Schulich Sch Engn, Banff, Canada, Jul 23-27, 2007

    Article  Google Scholar 

  89. Adalsteinsson, D., Hilpert, M.: Transp. Porous Media 65(2), 337 (2006). https://doi.org/10.1007/s11242-005-6091-6

    Article  Google Scholar 

  90. McClure, J.E., Wang, H., Prins, J.F., Miller, C.T., Feng, W.C.: In: Proceedings of the IEEE 28th International Parallel and Distributed Processing Symposium (IEEE Computer Society, USA, 2014), IPDPS ’14, pp 583–592 (2014). https://doi.org/10.1109/IPDPS.2014.67

  91. McClure, J.E., Berrill, M.A., Prins, J.F., Miller, C.T.: In: Proceedings of the 2nd Workshop on In Situ Infrastructures for Enabling Extreme-scale Analysis and Visualization (IEEE Press, Piscataway, NJ, USA), ISAV ’16, pp. 12–17. https://doi.org/10.1109/ISAV.2016.8 (2016)

  92. Schröder-Turk, G.E., Mickel, W., Kapfer, S.C., Schaller, F.M., Breidenbach, B., Hug, D., Mecke, K.: New J. Phys. 15(8), 083028 (2013). https://doi.org/10.1088/1367-2630/15/8/083028

    Article  Google Scholar 

  93. Ginzburg, I., Verhaeghe, F., d’Humieres, D.: Commun. Comput. Phys. 3(2), 427 (2008)

    Google Scholar 

  94. Zou, Q., He, X.: Phys. Fluids 9 (6), 1591 (1997). https://doi.org/10.1063/1.869307

    Article  Google Scholar 

  95. McClure, J., Li, Z., Sheppard, A., Miller, C.: Computers & Fluids. 210, 104670 (2020)

  96. Amott, E.: Trans. AIME 219, 156–162 (1959)

    Article  Google Scholar 

  97. Hassler, G.L., Brunner, E.: SPE J. 160(1). https://doi.org/10.2118/945114-G (1945)

  98. Andersen, P.Ø., Skjæveland, S.M., Standnes, D.C.: Petrophysics 58(4), 366–375 (2017)

    Google Scholar 

  99. Avraam, D.G., Payatakes, A.C.: J. Fluid Mechan. 293, 207–236 (1995). https://doi.org/10.1017/S0022112095001698

    Article  Google Scholar 

  100. Fredrich, J.T., Digiovanni, A.A., Noble, D.R.: J. Geophys. Res.-Solid Earth 111(B3) (2006)

  101. Armstrong, R.T., McClure, J.E., Berrill, M.A., Rücker, M., Schlüter, S., Berg, S.: Phys. Rev. E 94, 043113 (2016). https://doi.org/10.1103/PhysRevE.94.043113

    Article  Google Scholar 

  102. Boek, E.S., Venturoli, M.: Comput. Math. Appl. 59(7), 2305 (2010). https://doi.org/10.1016/j.camwa.2009.08.063

    Article  Google Scholar 

  103. Fan, M., Dalton, L.E., McClure, J., Ripepi, N., Westman, E., Crandall, D., Chen, C.: Fuel 252, 522 (2019). https://doi.org/10.1016/j.fuel.2019.04.098http://www.sciencedirect.com/science/article/pii/S0016236119306635

    Article  Google Scholar 

  104. Wang, Y., Chung, T., Armstrong, R., McClure, J., Ramstad, T., Mostaghimi, P.: J. Comput. Phys. 401, 108966 (2020). https://doi.org/10.1016/j.jcp.2019.108966. http://www.sciencedirect.com/science/article/pii/S0021999119306710

    Article  Google Scholar 

  105. Pan, C., Hilpert, M., Miller, C.T.: Phys. Rev. E 64, 066702 (2001). https://doi.org/10.1103/PhysRevE.64.066702

    Article  Google Scholar 

  106. Lin, Q., Bijeljic, B., Berg, S., Pini, R., Blunt, M.J., Krevor, S.: Phys. Rev. E 99, 063105 (2019). https://doi.org/10.1103/PhysRevE.99.063105

    Article  Google Scholar 

  107. Lin, Q., Bijeljic, B., Pini, R., Blunt, M.J., Krevor, S.: Water Resour. Res. 54(9), 7046 (2018). https://doi.org/10.1029/2018WR023214

    Article  Google Scholar 

  108. Sun, C., McClure, J.E., Mostaghimi, P., Herring, A.L., Meisenheimer, D.E., Wildenschild, D., Berg, S., Armstrong, R.T.: J. Colloid Interface Sci. 578, 106 (2020). https://doi.org/10.1016/j.jcis.2020.05.076. http://www.sciencedirect.com/science/article/pii/S0021979720306822

    Article  Google Scholar 

  109. Li, Z., McClure, J., Ramstad, T.: Bentheimer sandstone two-fluid flow simulation resembling special core analysis protocol. https://doi.org/10.17612/3qz6-f710 (2020)

Download references

Acknowledgements

J.M. and Z.L. thank Equinor ASA for funding parts of this research through a post-doc project. T.R. thanks Anders Kristoffersen, Einar Ebeltoft, Knut Uleberg and Åsmund Haugen, Equinor, for valuable discussions. An award of computer time was provided by the Department of Energy Director’s Discretionary program and the Frontier Center for Accelerated Application Readiness (CAAR). This research also used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. T.R. acknowledges Equinor ASA for granting permission to publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. McClure.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClure, J.E., Li, Z., Berrill, M. et al. The LBPM software package for simulating multiphase flow on digital images of porous rocks. Comput Geosci 25, 871–895 (2021). https://doi.org/10.1007/s10596-020-10028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-10028-9

Keywords

Navigation