Skip to main content
Log in

A parallelization of the wavenumber integration acoustic modelling package OASES

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The wavenumber integration seismo-elastic model OASES can simulate the wave propagation in layered media, consisting of rough interfaces and elastic and porous layers. Range dependence is achieved by coupling vertical sections of layers, or cuts, together using the spectral super-element method. Only the specific frequencies, receiver depths, and offsets of interest need to be calculated when using the wavenumber integration technique. However, as pulse propagation at higher frequencies is simulated, denser sampling of frequencies must be used. For complex media with many layers, and many vertical sections, the computation time quickly escalates. By exploiting that each frequency response can be calculated independently, a parallelization of the OASES package has been implemented and is presented here. This makes otherwise computationally unfeasible or unpractical simulations feasible. In this work, the parallel OASES package is applied to, and benchmarked on, several acoustic and seismic problems. The increased computation capacity is used to simulate and image the full wave field of several cases, reducing the computation time in one of the cases from 1.5 years to 5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer, T.P., Antonov, J.I., Baranova, O.K., Coleman, C., Garcia, H.E., Grodsky, A., Johnson, D.R., Locarnini, R.A., Mishonov, A.V., Brien, T.D.O., Paver, C.R., Reagan, J.R., Seidov, D., Smolyar, I.V., Zweng, M.M., Sullivan, K.D.: World ocean database 2013. Sydney Levitus, Ed; Alexey Mishonoc, Technical Ed. https://doi.org/10.7289/V5NZ85MT (2013)

  2. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM 3 user’s guide and reference manual. http://www.netlib.org/pvm3/ (1993)

  3. Hansen, E., Gerland, S., Granskog, M.A., Pavlova, O., Renner, A.H.H., Haapala, J., Løyning, T.B., Tschudi, M.: Thinning of Arctic sea ice observed in Fram Strait: 1990-2011. J. Geophys. Res. Oceans 118(10), 5202–5221 (2013). https://doi.org/10.1002/jgrc.20393. http://doi.wiley.com/10.1002/jgrc.20393

    Article  Google Scholar 

  4. Hobæk, H., Sagen, H.: On underwater sound reflection from layered ice sheets. In: Proceedings of the 39th Scandinavian Symposium on Physical Acoustics, Geilo, Norway, arXiv:1604.02247, pp. 1–21 (2016)

  5. Hope, G., Sagen, H., Storheim, E., Hobæk, H., Freitag, L.: Measured and modeled acoustic propagation underneath the rough arctic sea-ice. J. Acoust. Soc. Am. 142(3), 1619–1633 (2017). https://doi.org/10.1121/1.5003786

    Article  Google Scholar 

  6. International Hydrographic Organization: Limits of Ocean and Seas. International Hyrographic Organization 3rd ed 28(3):38. http://www.iho-ohi.net/iho_pubs/standard/S-23/S23_1953.pdf (1953)

  7. International Hydrographic Organization, Sieger, R.: Limits of oceans and seas in digitized, machine readable form, https://doi.org/10.1594/PANGAEA.777975 (2012)

  8. Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H., Bartram, J.F.: . 2nd. Springer Science & Business Media, New York (2011). https://doi.org/10.1121/1.411832.

  9. Kuperman, W.A., Schmidt, H.: Self consistent perturbation approach to rough surface scattering in stratified elastic media. J. Acoust. Soc. Am. 86, 1511–1522 (1989). http://link.aip.org/link/?JASMAN/86/1511/1

    Article  Google Scholar 

  10. Laible, H., Rajan, S.D.: Temporal evolution of under ice reflectivity. J. Acoust. Soc. Am. 99(2), 851–865 (1996). https://doi.org/10.1121/1.414661

    Article  Google Scholar 

  11. McCammon, D.F., McDaniel, S.T.: The influence of the physical properties of ice on reflectivity. J. Acoust. Soc. Am. 77(2), 499–507 (1985). https://doi.org/10.1121/1.391869

    Article  Google Scholar 

  12. McLaughlin, K.L.: Wavenumber integration synthetic seismogram calculations using a parallel virtual machine. Tech. rep., Maxwell Technologies Inc San Diego Ca Federal Div (1996)

  13. Medwin, H.: Speed of sound in water: a simple equation for realistic parameters. J. Acoust. Soc. Am. 58(6), 1318–1319 (1975). https://doi.org/10.1121/1.380790. http://asa.scitation.org/doi/10.1121/1.380790

    Article  Google Scholar 

  14. Rajan, D., Frisk, G.V., Doutt, J.A., Sellers, J.: Determination of compressional wave and shear wave speed profiles in sea ice by crosshole tomography - theory and experiment. J. Acoust. Soc. Am. 93(February), 721–738 (1993)

    Article  Google Scholar 

  15. Schmidt, H.: SAFARI: Seismo-acoustic fast field algorithm for range-independent environments user’s guide. Tech. rep., SACLANT Undersea Research Centre (1988)

  16. Schmidt, H.: OASES Version 3.1 User guide and reference manual. http://lamss.mit.edu/lamss/pmwiki/pmwiki.php?n=Site.Oases (2011)

  17. Schmidt, H., Jensen, F.B.: A full wave solution for propagation in multilayered viscoelastic media with application to Gaussian beam reflection at fluid solid interfaces. J. Acoust. Soc. Am. 77(3), 813–825 (1985). https://doi.org/10.1121/1.392050

    Article  Google Scholar 

  18. Schmidt, H., Kuperman, W.A.: Spectral representations of rough interface reverberation in stratified ocean waveguides. J. Acoust. Soc. Am. 97, http://scitation.aip.org/content/asa/journal/jasa/97/4/10.1121/1.411945 (1995)

  19. Schmidt, H., Tango, G.: Efficient global matrix approach to the computation of synthetic seismograms. Geophys. J. Int. 84, 331–359 (1986). http://gji.oxfordjournals.org/content/84/2/331.short

    Article  Google Scholar 

  20. Temme, P., Müller, G.: Numerical simulation of vertical seismic profiling. J. Geophys. 50, 177–188 (1982)

    Google Scholar 

Download references

Funding

This work was supported by the Nansen Environmental and Remote Sensing Center, Bergen, Norway and Office of Naval Research (Global) (Grant No. N62909-14-1-NO33) and UNDER ICE (Grant No. 226373) projects. The HPC facilities provided by NOTUR (project no.: NN2993K) were used for the simulations in this paper. The authors thank H. Hobæk, H. Sagen, E. Storheim, and S. Outten at the Nansen Environmental and Remote Sensing Center for valuable discussions and suggestions during the work on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaute Hope.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hope, G., Schmidt, H. A parallelization of the wavenumber integration acoustic modelling package OASES. Comput Geosci 23, 777–792 (2019). https://doi.org/10.1007/s10596-019-9820-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-019-9820-6

Keywords

Mathematics Subject Classification (2010)

Navigation