Skip to main content

Advertisement

Log in

Quantitative evaluation of multiple-point simulations using image segmentation and texture descriptors

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Continuous growth of multiple-point simulation algorithms for modeling environmental variables necessitates a straightforward, reliable, robust, and distinctive method for evaluating the quality of output images. A good simulation method should produce realizations consistent with the training image (TI). Moreover, it should be capable of producing diverse realizations to effectively model the variability of real fields. In this paper, the pattern innovation capability is evaluated by estimating the coherence map using keypoint detection and matching, without assuming any access to the simulation process. Local binary patterns, as distinctive and effective texture descriptors, are also employed to evaluate the consistency of realizations with the TI. Our proposed method provides absolute measures in the interval [0,1], allowing MPS algorithms to be evaluated on their own. Experiments show that the produced scores are consistent with human perception and robust for different realizations obtained using the same method, allowing for a reliable judgment using a few realizations. While a human observer is highly sensitive to discontinuities and insensitive to verbatim copies, the proposed method considers both factors simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mariethoz, G., Lefebvre, S.: Bridges between multiple-point geostatistics and texture synthesis: Review and guidelines for future research. Comput. Geosci. 66, 66–80 (2014)

    Article  Google Scholar 

  2. Mariethoz, G., Linde, N., Jougnot, D., Rezaee, H.: Feature-preserving interpolation and filtering of environmental time series. Environ. Model Softw. 72, 71–76 (2015)

    Article  Google Scholar 

  3. Mariethoz, G., Caers, J.: Multiple-point geostatistics: stochastic modeling with training images. John Wiley & Sons, Hoboken (2014)

    Book  Google Scholar 

  4. Guardiano, F.B., Srivastava, R.M.: Multivariate geostatistics: beyond bivariate moments. In: Geostatistics Troia’92, pp. 133–144. Springer, Berlin (1993)

    Google Scholar 

  5. Abdollahifard, M.J., Faez, K.: Fast direct sampling for multiple-point stochastic simulation. Arab. J. Geosci. 7, 1927–1939 (2014)

    Article  Google Scholar 

  6. Mariethoz, G., Renard, P., Straubhaar, J.: The direct sampling method to perform multiple-point geostatistical simulations. Water Resour. Res. 46, (2010)

  7. Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34, 1–21 (2002)

    Article  Google Scholar 

  8. Boucher, A.: Considering complex training images with search tree partitioning. Comput. Geosci. 35, 1151–1158 (2009)

    Article  Google Scholar 

  9. Huysmans, M., Dassargues, A.: Direct multiple-point geostatistical simulation of edge properties for modeling thin irregularly shaped surfaces. Math. Geosci. 43, 521 (2011)

    Article  Google Scholar 

  10. Mariethoz, G., Straubhaar, J., Renard, P., Chugunova, T., Biver, P.: Constraining distance-based multipoint simulations to proportions and trends. Environ. Model Softw. 72, 184–197 (2015)

    Article  Google Scholar 

  11. Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modeling. Math. Geosci. 42, 487–517 (2010)

    Article  Google Scholar 

  12. Mahmud, K., Mariethoz, G., Caers, J., Tahmasebi, P., Baker, A.: Simulation of Earth textures by conditional image quilting. Water Resour. Res. 50, 3088–3107 (2014)

    Article  Google Scholar 

  13. Tahmasebi, P., Sahimi, M., Caers, J.: MS-CCSIM: accelerating pattern-based geostatistical simulation of categorical variables using a multi-scale search in Fourier space. Comput. Geosci. 67, 75–88 (2014)

    Article  Google Scholar 

  14. Abdollahifard, M.J.: Fast multiple-point simulation using a data-driven path and an efficient gradient-based search. Comput. Geosci. 86, 64–74 (2016)

    Article  Google Scholar 

  15. Li, X., Mariethoz, G., Lu, D., Linde, N.: Patch-based iterative conditional geostatistical simulation using graph cuts. Water Resour. Res. 52, 6297–6320 (2016)

    Article  Google Scholar 

  16. Parra, A., Ortiz, J.M.: Adapting a texture synthesis algorithm for conditional multiple point geostatistical simulation. Stoch. Env. Res. Risk A. 25, 1101–1111 (2011)

    Article  Google Scholar 

  17. Abdollahifard, M.J., Faez, K.: Stochastic simulation of patterns using Bayesian pattern modeling. Comput. Geosci. 17, 99–116 (2013)

    Article  Google Scholar 

  18. Tahmasebi, P., Hezarkhani, A., Sahimi, M.: Multiple-point geostatistical modeling based on the cross-correlation functions. Comput. Geosci. 16, 779–797 (2012)

    Article  Google Scholar 

  19. Rezaee, H., Marcotte, D., Tahmasebi, P., Saucier, A.: Multiple-point geostatistical simulation using enriched pattern databases. Stoch. Env. Res. Risk A. 29, 893–913 (2015)

    Article  Google Scholar 

  20. Abdollahifard, M.J., Ahmadi, S.: Reconstruction of binary geological images using analytical edge and object models. Comput. Geosci. 89, 239–251 (2016)

    Article  Google Scholar 

  21. Tan, X., Tahmasebi, P., Caers, J.: Comparing training-image based algorithms using an analysis of distance. Math. Geosci. 46, 149–169 (2014)

    Article  Google Scholar 

  22. Lange, K., Frydendall, J., Cordua, K.S., Hansen, T.M., Melnikova, Y., Mosegaard, K.: A frequency matching method: solving inverse problems by use of geologically realistic prior information. Math. Geosci. 44, 783–803 (2012)

    Article  Google Scholar 

  23. Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. In: IEEE Transactions on Information theory (2003)

    Google Scholar 

  24. Abdollahifard, M.J., Baharvand, M., Mariéthoz, G.: Efficient training image selection for multiple-point geostatistics via analysis of contours. Comput. Geosci. 128, 41–50 (2019)

    Article  Google Scholar 

  25. Pérez, C., Mariethoz, G., Ortiz, J.M.: Verifying the high-order consistency of training images with data for multiple-point geostatistics. Comput. Geosci. 70, 190–205 (2014)

    Article  Google Scholar 

  26. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  27. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)

    Article  Google Scholar 

  28. Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp. 229–238. ACM, New York (1995)

    Google Scholar 

  29. Sharifzadehlari, M., Fathianpour, N., Renard, P., Amirfattahi, R.: Random partitioning and adaptive filters for multiple-point stochastic simulation. Stoch. Env. Res. Risk A. 32, 1375–1396 (2018)

    Article  Google Scholar 

  30. Kalantari, S., Abdollahifard, M.J.: Optimization-based multiple-point geostatistics: A sparse way. Comput. Geosci. 95, 85–98 (2016)

    Article  Google Scholar 

  31. Pourfard, M., Abdollahifard, M.J., Faez, K., Motamedi, S.A., Hosseinian, T.: PCTO-SIM: Multiple-point geostatistical modeling using parallel conditional texture optimization. Comput. Geosci. 102, 116–138 (2017)

    Article  Google Scholar 

  32. Yang, L., Hou, W., Cui, C., Cui, J.: GOSIM: a multi-scale iterative multiple-point statistics algorithm with global optimization. Comput. Geosci. 89, 57–70 (2016)

    Article  Google Scholar 

  33. Szeliski, R.: Computer vision: algorithms and applications. Springer Science & Business Media, Berlin (2010)

    Google Scholar 

  34. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey vision conference, vol. 50, pp. 10–5244. Citeseer (1988)

  35. Mariethoz, G., Kelly, B.F.: Modeling complex geological structures with elementary training images and transform-invariant distances. Water Resour. Res. 47, (2011)

  36. Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica. 7, 381–413 (1992)

    Article  Google Scholar 

  37. Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recogn. 42, 425–436 (2009)

    Article  Google Scholar 

  38. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis & Machine Intelligence. 2037–2041 (2006)

  39. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19, 1657–1663 (2010)

    Article  Google Scholar 

  40. Abdollahifard, M.J., Nasiri, B.: Exploiting transformation-domain sparsity for fast query in multiple-point geostatistics. Comput. Geosci. 21, 289–299 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to anonymous reviewers who devoted their time and expertise to improving this paper. Their comments helped us in improving the paper presentation and proposed formulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Abdollahifard.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahifard, M.J., Mariéthoz, G. & Ghavim, M. Quantitative evaluation of multiple-point simulations using image segmentation and texture descriptors. Comput Geosci 23, 1349–1368 (2019). https://doi.org/10.1007/s10596-019-09901-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-019-09901-z

Keywords

Navigation