Skip to main content
Log in

Localized linear systems for fully implicit simulation of multiphase multicomponent flow in porous media

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

During the solution of fully implicit reservoir simulation time steps, it is often observed that the computed Newton updates may be very sparse, considering computer precision. This sparsity can be as high as 95% and can vary largely from one iteration to the next. In recent works, a mathematically sound framework was developed to predict the sparsity pattern before the full linear system is solved. The theory is restricted to general, scalar nonlinear advection-diffusion-reaction problems in multidimensional and heterogeneous settings. This theory had been applied to reduce the size of the linear systems that were computed during sequential implicit time steps for two-phase flow. The results confirmed that the linearization computations and the linear solution processes may be localized by as much as 95% while retaining the exact Newton convergence behavior and final solution. Inspired by the great success of that methodology, this work develops algorithmic extensions in order to devise localization algorithms for fully implicit coupled multicomponent problems. We propose, apply, and test a novel algorithm to resolve a system of hyperbolic equations obtained from an Equation of State–based compositional simulator. When applied to various fully implicit flow and multicomponent transport problems, involving six thermodynamic species, on the SPE 10 geological model, the observed reduction in computational effort ranges between six and 49-fold depending on the level of locality present in the system. We apply this algorithm to several injection and depletion scenarios with and without gravity and capillarity in order to investigate the adaptivity and robustness of the proposed method to the underlying heterogeneity and complexity. We demonstrate that the algorithm enables efficient and robust full-resolution fully implicit simulation without the errors introduced by adaptive discretization methods or the stability concerns of semi-implicit approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allgower, E., Böhmer, K., Potra, F., Rheinboldt, W.: A mesh-independence principle for operator equations and their discretizations. Soc. Indus. Appl. Math. Numer. Anal. 23(1), 160–169 (1986)

    Google Scholar 

  2. Axelsson, O.: Iterative Solution Methods. Cambridge University Press (1994)

  3. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Elsevier Applied Science (1979)

  4. Berger, M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82 (1), 64–84 (1989)

    Article  Google Scholar 

  5. Cai, X., Keyes, D., Marcinkowski, L.: Non-linear additive schwarz preconditioners and application in computational fluid dynamics. Int. J. Numer. Methods Fluids 40(12), 1463–1470 (2002)

    Article  Google Scholar 

  6. Cao, H., Tchelepi, H., Wallis, J., Yardumian, H.: Parallel scalable unstructured cpr-type linear solver for reservoir simulation. In: SPE Annual Technical Conference and Exhibition (2005)

  7. Chen, K.: Matrix Preconditioning Techniques and Applications. Cambridge University Press (2005)

  8. Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media. Computational Science and Engineering Society of Industrial Applied Mathematics (2006)

  9. Christie, M., Blunt, M.: Tenth spe comparative solution project: A comparison of upscaling techniques. Soc. Petroleum Eng. Reservoir Evalu. Eng. 4(4), 308–317 (2001)

    Article  Google Scholar 

  10. Coats, K.: A note on IMPES and some IMPES-based simulation models. Soc. Petroleum Eng. 5, 245–251 (2000)

    Google Scholar 

  11. Dawson, C., Klíe, H., Wheeler, M., Woodward, C.: A parallel, implicit, cell-centered method for two-phase flow with a preconditioned Newton–Krylov solver. Comput. Geosci. 1(3–4), 215–249 (1997)

    Article  Google Scholar 

  12. Deuflhard, P.: Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, vol. 35. Springer (2011)

  13. Engstler, C., Lubich, C.: Multirate extrapolation methods for differential equations with different time scales. Computing 58(2), 173–185 (1997)

    Article  Google Scholar 

  14. Gear, C., Wells, D.: Multirate linear multistep methods. BIT Numer. Math. 24(4), 484–502 (1984)

    Article  Google Scholar 

  15. Gerritsen, M., Lambers, J.: Integration of local–global upscaling and grid adaptivity for simulation of subsurface flow in heterogeneous formations. Comput. Geosci. 12(2), 193–208 (2008)

    Article  Google Scholar 

  16. Hornung, R., Trangenstein, J.: Adaptive mesh refinement and multilevel iteration for flow in porous media. J. Comput. Phys. 136(2), 522–545 (1997)

    Article  Google Scholar 

  17. Hwang, F., Cai, X.: A parallel nonlinear additive Schwarz preconditioned inexact newton algorithm for incompressible Navier–Stokes equations. J. Comput. Phys. 204(2), 666–691 (2005)

    Article  Google Scholar 

  18. Kelley, C., Sachs, E.: Mesh independence of newton-like methods for infinite dimensional problems. J. Integral Equ. Appl. 3(4), 549–573 (1991)

    Article  Google Scholar 

  19. Killough, J.E., Kossack, C.A.: Fifth comparative solution project: Evaluation of miscible flood simulators. In: SPE Symposium on Reservoir Simulation (1987)

  20. Lacroix, S., Vassilevski, Y., Wheeler, M.: Decoupling preconditioners in the implicit parallel accurate reservoir simulator (ipars). Numer. Linear Algebra Appl. 8(8), 537–549 (2003)

    Article  Google Scholar 

  21. Moncorgé, A., Tchelepi, H., Jenny, P.: Sequential fully implicit formulation for compositional simulation using natural variables. Journal of Computational Physics (To appear). arXiv:1804.09751 (2018)

  22. Møyner, O., Tchelepi, H.: A mass-conservative sequential implicit multiscale method for isothermal equation of state compositional problems. SPE Journal (To appear) (2018)

  23. Müller, S., Stiriba, Y.: Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. J. Sci. Comput. 30(3), 493–531 (2007)

    Article  Google Scholar 

  24. Sheth, S., Younis, R.: Localized computation of newton updates in fully-implicit two-phase flow simulation. Procedia Comput. Sci. 80, 1392–1403 (2016)

    Article  Google Scholar 

  25. Sheth, S., Younis, R.: Localized linear systems in sequential implicit simulation of two-phase flow and transport. Soc. Petroleum Eng. J. 22(05), 1542–1569 (2017)

    Google Scholar 

  26. Sheth, S., Younis, R.: Localized solvers for general full-resolution implicit reservoir simulation. In: SPE Reservoir Simulation Conference (2017)

  27. Skogestad, J., Keilegavlen, E., Nordbotten, J.: Domain decomposition strategies for nonlinear flow problems in porous media. J. Comput. Phys. 234, 439–451 (2012)

    Article  Google Scholar 

  28. Sun, S., Keyes, D., Liu, L.: Fully implicit two-phase reservoir simulation with the additive schwarz preconditioned inexact newton method. In: Society of Petroleum Engineers Reservoir Characterisation and Simulation Conference and Exhibition (2013)

  29. Trangenstein, J.: Multi-scale iterative techniques and adaptive mesh refinement for flow in porous media. Adv. Water Resour. 25(8), 1175–1213 (2002)

    Article  Google Scholar 

  30. Wallis, J., Kendall, R., Little, T., et al.: Constrained residual acceleration of conjugate residual methods. In: SPE-13536-MS Inproceedings of the SPE Reservoir Simulation Symposium (1985)

  31. Younis, R.: A sharp analytical bound on the spatiotemporal locality in general two-phase flow and transport phenomena. Procedia Comput. Sci. 18, 473–480 (2013)

    Article  Google Scholar 

  32. Younis, R., Tchelepi, H., Aziz, K.: Adaptively localized continuation-newton method–nonlinear solvers that converge all the time. SPE J. 15(02), 526–544 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank TOTAL management for permission to publish this work. The authors also acknowledge the members of the Future Reservoir Simulation Systems and Technology program for their partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soham Sheth.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Mathematical Development Including Capillarity

Appendix: Mathematical Development Including Capillarity

Starting with Eq. 6 and assuming pressure of the first phase to be the primary variable, we obtain

$$ \begin{array}{@{}rcl@{}} &&\Bigg[ \phi \sum\limits_{p} \rho_{p} S_{p} z_{c} \Bigg]^{n+1} - \left[ \phi \sum\limits_{p} \rho_{p} S_{p} z_{c} \right]^{n} \\ && -\overrightarrow{\nabla} \cdot \left[ {\Delta} t \sum\limits_{p} \frac{x_{c,p} \rho_{p} k_{rp}}{\mu_{p}} \mathbf{K} \left( \overrightarrow{\nabla P}_{1} + \overrightarrow{\nabla P}_{cp1} - \overrightarrow{\gamma}_{p} \nabla D \right) \right] \\ &=& {\Delta} t \sum\limits_{p} q_{c,p}, \forall c \in \{1,...,n_{c}\}, \end{array} $$
(33)

where Pcp1 = PpP1 is the capillary pressure between phase p and the primary phase 1. Introducing notation

$$ \begin{array}{@{}rcl@{}} &&\alpha_{c}(x) = \left[ \phi \sum\limits_{p} \rho_{p} S_{p} z_{c} \right]^{n+1} - \left[ \phi \sum\limits_{p} \rho_{p} S_{p} z_{c} \right]^{n} \\ && \qquad\qquad - {\Delta} t \sum\limits_{p} q_{c,p}, \forall c \in \{1,...,n_{c}\}, \end{array} $$
(34)
$$ \begin{array}{@{}rcl@{}} &&\overrightarrow{{\beta}}_{c}(x) = \left[ {\Delta} t \sum\limits_{p} \frac{x_{c,p} \rho_{p} k_{rp}}{\mu_{p}} \mathbf{K} \left( \overrightarrow{\nabla P}_{p} - {\overrightarrow{\gamma}}_{p} \nabla D \right) \right], \\ &&\qquad\qquad \forall c \in \{1,...,n_{c}\}, \end{array} $$
(35)
$$ \begin{array}{@{}rcl@{}} &&{\gamma_{c}^{p}} = {\Delta} t \frac{x_{c,p} \rho_{p} k_{rp}}{\mu_{p}} \mathbf{K}, \forall c \in \{1,...,n_{c}\}, \forall p \in \{1,...,n_{p}\}, \end{array} $$
(36)
$$ \begin{array}{@{}rcl@{}} &&{\xi_{c}^{p}} = P_{c1p}, \forall p \in \{1,...,n_{p}\}, \end{array} $$
(37)

Equation 1 is reduced to

$$ \begin{array}{lll} R_{\infty,c}(x) &= \alpha_{c}(x) - \overrightarrow{\nabla} \cdot \left[ \overrightarrow{\beta}_{c}(x) + \sum\limits_{p} {\gamma_{c}^{p}}(x) \overrightarrow{\nabla \xi}_{c}^{p}(x) \right] \\ &= 0, \forall c \in \{1,...,n_{c}\}. \end{array} $$
(38)

Following the derivation in the previous section, the infinite-dimensional iteration, in three (Cartesian) spatial dimensions, can be written as

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{d} \frac{\partial \alpha_{c}}{\partial z_{d}} \delta_{\infty, d} \\ &-& \sum\limits_{i} \frac{\partial}{\partial x_{i}} \left[ \sum\limits_{d} \frac{\partial {\beta^{i}_{c}}}{\partial z_{d}} \delta_{\infty,d} \right] \\ &-& \sum\limits_{i} \frac{\partial}{\partial x_{i}} \Bigg[ \sum\limits_{p} \frac{\partial {\xi_{c}^{p}}}{\partial x_{i}} \sum\limits_{d} \frac{\partial {\gamma_{c}^{p}}}{\partial z_{d}} \delta_{\infty, d}\Bigg] \\ &-& \sum\limits_{i} \frac{\partial}{\partial x_{i}} \Bigg[ \sum\limits_{p} {\gamma_{c}^{p}} \frac{\partial}{\partial x_{i}}\left( \sum\limits_{d} \frac{\partial {\xi_{c}^{p}}}{\partial z_{d}} \delta_{\infty,d} \right) \Bigg] \\ &=& (-)R_{\infty,c} \forall c \in \{1,...,n_{c}\}, i = {1,2,3}. \end{array} $$
(39)

Expanding the last term and grouping the second, third, and fourth term gives

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{d} \frac{\partial \alpha_{c}}{\partial z_{d}} \delta_{\infty, d} \\ &- &\sum\limits_{i} \frac{\partial}{\partial x_{i}} \Bigg[ \sum\limits_{d} \frac{\partial {\beta^{i}_{c}}}{\partial z_{d}} \delta_{\infty,d} + \sum\limits_{p} \frac{\partial {\xi_{c}^{p}}}{\partial x_{i}} \sum\limits_{d} \frac{\partial {\gamma_{c}^{p}}}{\partial z_{d}} \delta_{\infty, d} \end{array} $$
(40)
$$ \begin{array}{@{}rcl@{}} &+& \sum\limits_{p} {\gamma_{c}^{p}} \sum\limits_{d} \frac{\partial^{2} {\xi_{c}^{p}}}{\partial x_{i} \partial z_{d}} \delta_{\infty,d}\Bigg] \\ &-& \sum\limits_{i} \frac{\partial}{\partial x_{i}} \Bigg[ \sum\limits_{p} {\gamma_{c}^{p}} \sum\limits_{d} \frac{\partial {\xi_{c}^{p}}}{\partial z_{d}} \frac{\partial \delta_{\infty,d}}{\partial x_{i}} \Bigg] \\ &= &(-)R_{\infty,c} \forall c \in \{1,...,n_{c}\}, i = {1,2,3}. \end{array} $$

Expanding the last term once again gives

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{d} \frac{\partial \alpha_{c}}{\partial z_{d}} \delta_{\infty, d} \\ &-& \sum\limits_{i} \frac{\partial}{\partial x_{i}} \Bigg[ \sum\limits_{d} \frac{\partial {\beta^{i}_{c}}}{\partial z_{d}} \delta_{\infty,d} + \sum\limits_{d} \sum\limits_{p} \frac{\partial {\gamma_{c}^{p}}}{\partial z_{d}} \frac{\partial {\xi_{c}^{p}}}{\partial x_{i}} \delta_{\infty, d} \\ &+& \sum\limits_{d} \sum\limits_{p} {\gamma_{c}^{p}} \frac{\partial^{2} {\xi_{c}^{p}}}{\partial x_{i} \partial z_{d}} \delta_{\infty,d}\Bigg] \\ &-& \sum\limits_{i} \sum\limits_{d} \frac{\partial}{\partial x_{i}} \Bigg[ \sum\limits_{p} {\gamma_{c}^{p}} \frac{\partial {\xi_{c}^{p}}}{\partial z_{d}} \Bigg] \frac{\partial \delta_{\infty,d}}{\partial x_{i}}\\ &-& \sum\limits_{i} \sum\limits_{d} \Bigg[ \sum\limits_{p} {\gamma_{c}^{p}} \frac{\partial {\xi_{c}^{p}}}{\partial z_{d}} \Bigg] \frac{\partial^{2} \delta_{\infty,d}}{\partial {x_{i}^{2}}} \\ &=& (-)R_{\infty,c} \forall c \in \{1,...,n_{c}\}, i = {1,2,3}. \end{array} $$
(41)

The final equation grouped by the derivatives of \(\delta _{\infty ,d}\) is written as

$$ \begin{array}{@{}rcl@{}} &\sum\limits_{d} \Bigg[ \frac{\partial \alpha_{c}}{\partial z_{d}} - \sum\limits_{i} \frac{\partial}{\partial x_{i}} \Bigg(\frac{\partial {\beta^{i}_{c}}}{\partial z_{d}} + \sum\limits_{p} \frac{\partial {\gamma_{c}^{p}}}{\partial z_{d}} \frac{\partial {\xi_{c}^{p}}}{\partial x_{i}} \\ &+ \sum\limits_{p} {\gamma_{c}^{p}} \frac{\partial^{2} {\xi_{c}^{p}}}{\partial x_{i} \partial z_{d}}\Bigg) \Bigg] \delta_{\infty,d} \\ &- \sum\limits_{d} \sum\limits_{i} \Bigg[ \frac{\partial {\beta^{i}_{c}}}{\partial z_{d}} + \sum\limits_{p} \frac{\partial {\gamma_{c}^{p}}}{\partial z_{d}} \frac{\partial {\xi_{c}^{p}}}{\partial x_{i}} + \sum\limits_{p} {\gamma_{c}^{p}} \frac{\partial^{2} {\xi_{c}^{p}}}{\partial x_{i} \partial z_{d}}\\ &+ \frac{\partial}{\partial x_{i}} \left( \sum\limits_{p} {\gamma_{c}^{p}} \frac{\partial {\xi_{c}^{p}}}{\partial z_{d}} \right)\Bigg] \frac{\partial \delta_{\infty,d}}{\partial x_{i}} \\ &- \sum\limits_{d} \Bigg[ \sum\limits_{p} {\gamma_{c}^{p}} \frac{\partial {\xi_{c}^{p}}}{\partial z_{d}} \Bigg] \sum\limits_{i} \frac{\partial^{2} \delta_{\infty,d}}{\partial {x_{i}^{2}}} \\ &= (-)R_{\infty,c} \forall c \in \{1,...,n_{c}\}, i = {1,2,3}. \end{array} $$
(42)

Substituting

$$(A)_{c,d}:=\frac{\partial \alpha_{c}}{\partial z_{d}}, (B^{i})_{c,d}:=\frac{\partial {\beta^{i}_{c}}}{\partial z_{d}}, ({\Gamma}^{p})_{c,c}:={\gamma^{p}_{c}}, $$
$$({{\Gamma}^{p}}^{\prime})_{c,d}:=\frac{\partial {\gamma^{p}_{c}}}{\partial z_{d}}, ({\Xi}^{p})_{c,c}:={\xi^{p}_{c}}, \text{and } ({{\Xi}^{p}}^{\prime})_{c,d}:=\frac{\partial {\xi^{p}_{c}}}{\partial z_{d}},$$

for all c,d ∈{1,...,nc} in Eq. 10, gives

$$ \begin{array}{@{}rcl@{}} &\Bigg[ A - \sum\limits_{i} \frac{\partial}{\partial x_{i}} \left( B^{i} + \sum\limits_{p} {{\Gamma}^{p}}^{\prime} \frac{\partial {\Xi}^{p}}{\partial x_{i}} + \sum\limits_{p} {\Gamma}^{p} \frac{\partial {{\Xi}^{p}}^{\prime}}{\partial x_{i}} \right)\Bigg] \delta_{\infty}\\ &- \sum\limits_{i} \Bigg[ B^{i} + \sum\limits_{p} {{\Gamma}^{p}}^{\prime} \frac{\partial {\Xi}^{p}}{\partial x_{i}} + \sum\limits_{p} {\Gamma}^{p} \frac{\partial {{\Xi}^{p}}^{\prime}}{\partial x_{i}} \end{array} $$
(43)
$$ \begin{array}{@{}rcl@{}} &+ \frac{\partial }{\partial x_{i}} \sum\limits_{p} {\Gamma}^{p} {{\Xi}^{p}}^{\prime} \Bigg] \frac{\partial \delta_{\infty}}{\partial x_{i}} \\ & -\sum\limits_{p} {\Gamma}^{p} {{\Xi}^{p}}^{\prime} \sum\limits_{i} \frac{\partial^{2} \delta_{\infty}}{\partial {x_{i}^{2}}} = (-)R_{\infty}, \forall p \in \{1,...,n_{p}\}. \end{array} $$
(44)

Assuming that the residual can be projected onto a discrete Banach space as shown in Eq. 17, Eq. 44 can be written out for each control volume as

$$ \left\{\begin{array}{lll} &\Bigg[ A - \sum\limits_{i} \frac{\partial}{\partial x_{i}} \left( B^{i} + \sum\limits_{p} {{\Gamma}^{p}}^{\prime} \frac{\partial {\Xi}^{p}}{\partial x_{i}} + \sum\limits_{p} {\Gamma}^{p} \frac{\partial {{\Xi}^{p}}^{\prime}}{\partial x_{i}} \right)\Bigg] \delta_{\infty,{\Omega}} \\ & \qquad- \sum\limits_{i} \Bigg[ B^{i} + \sum\limits_{p} {{\Gamma}^{p}}^{\prime}\frac{\partial {\Xi}^{p}}{\partial x_{i}} + \sum\limits_{p} {\Gamma}^{p} \frac{\partial {{\Xi}^{p}}^{\prime}}{\partial x_{i}} \\ & \qquad+ \frac{\partial }{\partial x_{i}} \sum\limits_{p} {\Gamma}^{p} {{\Xi}^{p}}^{\prime} \Bigg] \frac{\partial \delta_{\infty,{\Omega}}}{\partial x_{i}} \\ & \qquad-\sum\limits_{p} {\Gamma}^{p} {{\Xi}^{p}}^{\prime} \sum\limits_{i} \frac{\partial^{2} \delta_{\infty,{\Omega}}}{\partial {x_{i}^{2}}} = 0, \forall x \not \in {\Omega},\\ &\Bigg[ A - \sum\limits_{i} \frac{\partial}{\partial x_{i}} \left( B^{i} + \sum\limits_{p} {{\Gamma}^{p}}^{\prime}\frac{\partial {\Xi}^{p}}{\partial x_{i}} + \sum\limits_{p} {\Gamma}^{p} \frac{\partial {{\Xi}^{p}}^{\prime}}{\partial x_{i}} \right)\Bigg] \delta_{\Omega} \\ & \qquad = (-)R_{h,{\Omega}}, \qquad\qquad\qquad\qquad \forall x \in {\Omega}. \end{array}\right. $$
(45)

The boundary conditions used to solve the continuous Newton iteration in this case are (1) \(\delta _{\infty , {\Omega }} = \delta _{\Omega } \forall x\in {\Omega }\), given by the second sub-equation in Eq. 45 and (2) \(\delta _{\infty , {\Omega }}\) is bounded at \(x = \infty \). Similar to the derivation presented in the previous section, the next step towards solving (45) is to homogenize the variable coefficients. After the first step of homogenization, we obtain

$$ \left\{\begin{array}{lll} &\Bigg[ A^{*} - \sum\limits_{i} \frac{\partial}{\partial x_{i}} \Bigg(B^{*} + \left\{ \sum\limits_{p} {{\Gamma}^{p}}^{\prime} \frac{\partial {\Xi}^{p}}{\partial x_{i}} \right\}^{*} \\ &\qquad+ \left\{ \sum\limits_{p} {\Gamma}^{p} \frac{\partial {{\Xi}^{p}}^{\prime}}{\partial x_{i}} \right\}^{*} \Bigg)\Bigg] \delta^{*}_{\infty,{\Omega}} -\\ &\qquad\sum\limits_{i} \Bigg(B^{*} + \left\{ \sum\limits_{p} {{\Gamma}^{p}}^{\prime} \frac{\partial {\Xi}^{p}}{\partial x_{i}}\right\}^{*} + \left\{ \sum\limits_{p} {\Gamma}^{p} \frac{\partial {{\Xi}^{p}}^{\prime}}{\partial x_{i}} \right\}^{*} \\ &\qquad+ \left\{ \frac{\partial }{\partial x_{i}} \sum\limits_{p} {\Gamma}^{p} {{\Xi}^{p}}^{\prime} \right\}^{*} \Bigg) \frac{\partial \delta^{*}_{\infty,{\Omega}}}{\partial x_{i}} \\ &\qquad - \left\{\sum\limits_{p} {\Gamma}^{p} {{\Xi}^{p}}^{\prime} \right\}^{*} \sum\limits_{i} \frac{\partial^{2} \delta^{*}_{\infty,{\Omega}}}{\partial {x^{2}_{i}}} = 0, \qquad \forall x \not \in {\Omega},\\ &\Bigg(A - \sum\limits_{i} \frac{\partial}{\partial x_{i}} \Bigg[ B^{i} + \sum\limits_{p} {{\Gamma}^{p}}^{\prime}\frac{\partial {\Xi}^{p}}{\partial x_{i}} \\ &\qquad + \sum\limits_{p} {\Gamma}^{p} \frac{\partial {{\Xi}^{p}}^{\prime}}{\partial x_{i}} \Bigg]\Bigg) \delta^{*}_{\Omega} = (-)R_{h,{\Omega}}, \qquad \forall x \in {\Omega}. \end{array}\right. $$
(46)

The coefficient of \(\delta ^{*}_{\Omega }\) in the second part of Eq. 46 is not homogenized as it is constant and evaluated at the centroid of the control volume (see assumption 3 in the next section). Finally, radially symmetric solutions, \(\tilde \delta ^{*}_{\infty , {\Omega }}(r)\), can be obtained by homogenizing the coefficient matrices containing vector entries. Homogenizing the coefficient of \(\frac {\partial \delta ^{*}_{\infty ,{\Omega }}}{\partial x_{i}}\) in Eq. 46 and writing

$$ \begin{array}{@{}rcl@{}} \tilde A := &A^{*} - \sum\limits_{i} \frac{\partial}{\partial x_{i}} \Bigg(B^{*} + \left\{ \sum\limits_{p} {{\Gamma}^{p}}^{\prime} \frac{\partial {\Xi}^{p}}{\partial x_{i}} \right\}^{*} \\ &+ \left\{ \sum\limits_{p} {\Gamma}^{p} \frac{\partial {{\Xi}^{p}}^{\prime}}{\partial x_{i}} \right\}^{*} \Bigg) \end{array} $$
(47)
$$ \begin{array}{@{}rcl@{}} \tilde C := &\min\limits_{i} \Bigg(B^{*} + \left\{ \sum\limits_{p} {{\Gamma}^{p}}^{\prime} \frac{\partial {\Xi}^{p}}{\partial x_{i}}\right\}^{*} + \left\{ \sum\limits_{p} {\Gamma}^{p} \frac{\partial {{\Xi}^{p}}^{\prime}}{\partial x_{i}} \right\}^{*} \\ &+ \left\{ \frac{\partial }{\partial x_{i}} \sum\limits_{p} {\Gamma}^{p} {{\Xi}^{p}}^{\prime} \right\}^{*} \Bigg) \end{array} $$
(48)
$$ \begin{array}{@{}rcl@{}} \tilde D := &\left\{\sum\limits_{p} {\Gamma}^{p} {{\Xi}^{p}}^{\prime} \right\}^{*} \end{array} $$
(49)

we get

$$ \tilde A \tilde\delta^{*}_{\infty,{\Omega}}(r) - \tilde C \frac{\partial \tilde\delta^{*}_{\infty,{\Omega}}(r)}{\partial r} - \tilde D \frac{\partial^{2} \tilde\delta^{*}_{\infty,{\Omega}}(r) }{\partial r^{2}}= 0. $$
(50)

The solution of this equation depends on the sign of \({4 \tilde A \tilde D + \tilde C^{2}}\). Real and distinct roots are obtained for \({4 \tilde A \tilde D + \tilde C^{2}} > 0\). Cases when \({4 \tilde A \tilde D + \tilde C^{2}} < 0\), complex conjugates are obtained and \({4 \tilde A \tilde D + \tilde C^{2}} = 0\) results in repeated real roots. In this work, it is assumed that \({4 \tilde A \tilde D + \tilde C^{2}} > 0\). This condition is enforced by taking the norm of the eigenvalues while computing the local coefficient matrices. Further research is required to study the behaviour of the solutions obtained when this condition is not satisfied or when the local matrices have complex eigenvalues. The solution then becomes

$$ \tilde\delta^{*}_{\infty,{\Omega}}(r) = \exp\left[ - \frac{\sqrt{4 \tilde A \tilde D + \tilde C^{2}} + \tilde C}{2\tilde D} (r - r_{\Omega}) \right] \tilde\delta^{*}_{\Omega}. $$
(51)

Finally, following the derivation in the previous section, the conservative estimate, \(\hat \delta ^{*}_{\infty , {\Omega }}\), such that \(\left \Vert {\hat \delta ^{*}_{\infty , {\Omega }}}\right \Vert \ge \left \Vert {\tilde \delta ^{*}_{\infty , {\Omega }}}\right \Vert \), is given by

$$ \hat\delta^{*}_{\infty,{\Omega}}(r) = \tilde\delta^{*}_{\Omega} \exp \left[ -\lambda_{\min} (r - r_{\Omega})\right], $$
(52)

where \(\lambda _{\min \limits }\) is the norm of the minimum eigenvalue of \(\frac {\sqrt {4 \tilde A \tilde D + \tilde C^{2}} + \tilde C}{2\tilde D}\) in Eq. 51. The radius of influence is calculated by Eq. 25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheth, S., Moncorgé, A. & Younis, R. Localized linear systems for fully implicit simulation of multiphase multicomponent flow in porous media. Comput Geosci 24, 743–759 (2020). https://doi.org/10.1007/s10596-019-09840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-019-09840-9

Keywords

Navigation