Skip to main content
Log in

Finite element simulations of logging-while-drilling and extra-deep azimuthal resistivity measurements using non-fitting grids

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We propose a discretization technique using non-fitting grids to simulate magnetic field-based resistivity logging measurements. Non-fitting grids are convenient because they are simpler to generate and handle than fitting grids when the geometry is complex. On the other side, fitting grids have been historically preferred because they offer additional accuracy for a fixed problem size in the general case. In this work, we analyse the use of non-fitting grids to simulate the response of logging instruments that are based on magnetic field resistivity measurements using 2.5D Maxwell’s equations. We provide various examples demonstrating that, for these applications, if the finite element matrix coefficients are properly integrated, the accuracy loss due to the use of non-fitting grids is negligible compared to the case where fitting grids are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abubakar, A., Habashy, T.M., Druskin, V.L., Knizhnerman, L., Alumbaugh, D.: 2.5d forward and inverse modeling for interpreting low-frequency electromagnetic measurements. Geophysics 73(4), F165–F177 (2008)

    Article  Google Scholar 

  2. Abubakar, A., van de Berg, P.M., Habashy, T.M.: An integral equation approeach for 2.5-dimensional forward and inverse electromagnetic scattering. Geophyss. J. Int. 165, 744–762 (2006)

    Article  Google Scholar 

  3. Babuška, I., Caloz, G., Osborn, J.E.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31(4), 945–981 (1994)

    Article  Google Scholar 

  4. Barucq, H., Chaumont-Frelet, T., Gout, C.: Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation. Math. Comput. 86(307), 2129–2157 (2016)

    Article  Google Scholar 

  5. Bittar, M., Klein, J., Beste, R., Hu, G., Wu, M., Pitcher, J., Golta, C., Althoff, G., Sitka, M., Minosyan, V., Paulk, M.: A new azimuthal deep-reading resistivity tool for geosteering and advanced formation evaluation. SPE Reserv. Eval. Eng. 12(2), 270–279 (2009)

    Article  Google Scholar 

  6. Cangellaris, A.C., Wright, D.B.: Analyses of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena. IEEE Trans. Antennas Propag. 39 (10), 1518–1525 (1991)

    Article  Google Scholar 

  7. Chaumont-Frelet, T., Nicaise, S., Pardo, D.: Finite element approximation of electromagnetic fields using non-fitting meshes for geophysics, submitted to SIAM J. Numer Anal (2017)

  8. Ciarlet, P.G.: The finite element method for elliptic problems. SIAM (1978)

  9. Davydycheva, S., Druskin, V., Habashy, T.: An efficient finite-difference scheme for electromagnetic logging in 3d anisotropic inhomogeneous media. Geophysics 68(5), 1525–1536 (2003)

    Article  Google Scholar 

  10. Davydycheva, S., Homan, D., Minerbo, G.: Triaxial induction tool with electrode sleeve: FD modeling in 3D geometries. J. Appl. Geophys. 67, 98–108 (2009)

    Article  Google Scholar 

  11. Garcia, D., Pardo, D., Dalcin, L., Paszyński, M., Collier, N., Calo, V.M.: The value of continuity: refined isogeometric analysis and fast direct solvers. Comput. Methods Appl. Mech. Eng. 213–216, 353–361 (2017)

    Google Scholar 

  12. Habashy, T.M., Abubakar, A.: A generalized material averaging formulation for modelling the electromagnetic fields. J. of Electromagn. Waves and Appl. 21(9), 1145–1159 (2007)

    Google Scholar 

  13. Howard, A.Q., Chew, W.C.: Electromagnetic borehole fields in a layered, dipping-bed environment with invasion. Geophysics 57(3), 451–465 (1992)

    Article  Google Scholar 

  14. Kristensson, G.: Homogenization of the Maxwell equations in an anisotropic material. Radio Sci. 38(2), VIC 19–1–VIC–19–8 (2003)

    Article  Google Scholar 

  15. Leveque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Number. Anal. 31(4), 1019–1044 (1994)

    Article  Google Scholar 

  16. Liu, H.: Principles and Applications of well Logging. Springer Mineralogy, Springer-Verlag , Berlin (2017)

    Book  Google Scholar 

  17. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  18. Moskow, S., Druskin, V., Habashy, T., Lee, P., Davydycheva, S.: A finite difference scheme for elliptic equations with rough coefficients using a cartesian grid nonconforming to interfaces. SIAM J. Numer. Anal. 36(2), 442–464 (1999)

    Article  Google Scholar 

  19. Muga, I., Pardo, D., Matuszyk, P.J., Torres-Verdín, C.: Semi-analytical response of acoustic logging measurements in frequency domain. Comput. Math. Appl. 70, 314–329 (2015)

    Article  Google Scholar 

  20. Nam, M.J., Pardo, D., Torres-Verdín, C., Hwang, S., Park, K.G., Lee, C.: Simulation of eccentricity effects on shot- and long-normal logging measurements using a fourier-hp-finite-element method. Explor. Geophys. 41, 118–127 (2010)

    Article  Google Scholar 

  21. Nédélec, J.C.: Mixed finite elements in R3. Numer. Math. 35, 315–341 (1980)

    Article  Google Scholar 

  22. Nimmer, R.E., Osiensky, J.L., Binley, A.M.: Effects of borehole fill on resistivity investigations. Symp. Appl. Geophys. Eng. Environ. Probl. 2003, 116–130 (2003)

    Google Scholar 

  23. Pardo, D., Demkowicz, L., Torres-Verdín, C., Paszynski, M.: Two-dimensional high-accuracy simulation of resistivity logging-while-drilling (lwd) measurements using a self-adaptive goal-oriented hp finite element method. SIAM J. Appl. Math. 66(6), 2085–2106 (2006)

    Article  Google Scholar 

  24. Pardo, D., Nam, M.J., Torres-Verdín, C., Hoversten, M. G., Garay, L.: Simulation of marine controlled source electromagnetic measurements using a parallel fourier hp-finite element method. Comput. Geosci. 67, 15–23 (2011)

    Google Scholar 

  25. Pardo, D., Paszyński, M., Collier, N., Alvarez, J., Dalcin, L., Calo, V.M.: The value of continuity: refined isogeometric analysis and fast direct solvers. SeMA J. 57, 107–134 (2012)

    Article  Google Scholar 

  26. Pardo, D., Torres-Verdín, C.: Fast 1d inversion of logging-while-drilling resistivity measurements for improved estimation of formation resistivity in high-angle and horizontal wells. Geophysics 80(2), E111–E124 (2015)

    Article  Google Scholar 

  27. Rodríguez-rozaz, A, Pardo, D., Torres-Verdín, C.: Advances toward the fast simulation of 2.5d lwd and deep azimuthal resistivity tools. In: Proceedings of Joint Industry Research Consortium of Formation Evaluation (Sixteenth Annual Meetin), pp. 1–4. Austin (2016)

  28. Salazar, J.M., Torres-Verdín, C.: Quantitative comparison of processes of oil- and water-based mud-filtrate invasion and corresponding effects on borehole resistivity measurements. Geophysics 74(1), E57–E73 (2009)

    Article  Google Scholar 

  29. Smith, D.R., Pendry, J.B.: Homogenization of metamaterials by field averaging (invited paper). J. Opt. Soc. Am. B 23(3), 391–403 (2006)

    Article  Google Scholar 

  30. Tilsley-Baker, R., Hartmann, A., Sviridov, M., Sanabria, O., Skillings, J., Kjolleberg, M., Barbosa, J.E., Loures, L., Swalf Pearson, P., Morani, B.: The Importance of Extra-Deep Azimuthal Resistivity in Reservoir Development: An Update on Recent Field Experiences. OTC Brasil, Offshore Technology Conference (2015)

  31. Wilt, M.J., Alumbaugh, D.L., Morrison, H.F., Becker, A., Lee, K.H., Deszcz-Pan, M.: Crosswell electromagnetic tomography: system design considerations and field results. Geophysics 60(3), 871–885 (1995)

    Article  Google Scholar 

Download references

Funding

The authors have received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 644602, the Projects of the Spanish Ministry of Economy and Competitiveness with reference MTM2016-76329-R (AEI/FEDER, EU), and MTM2016-81697-ERC/AEI, the BCAM “Severo Ochoa” accreditation of excellence SEV-2013-0323, and the Basque Government through the BERC 2014-2017 programme, and the Consolidated Research Group Grant IT649-13 on “Mathematical Modeling, Simulation, and Industrial Applications (M2SI)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Chaumont-Frelet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaumont-Frelet, T., Pardo, D. & Rodríguez-Rozas, Á. Finite element simulations of logging-while-drilling and extra-deep azimuthal resistivity measurements using non-fitting grids. Comput Geosci 22, 1161–1174 (2018). https://doi.org/10.1007/s10596-018-9744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-018-9744-6

Keywords

Navigation