Skip to main content
Log in

Surrogate combining harmonic decomposition and polynomial chaos for seismic shear waves in uncertain media

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

A polynomial chaos (PC) surrogate is proposed to reconstruct seismic time series in one-dimensional (1D) uncertain media. Our approach overcomes the deterioration of the PC convergence rate during long time integration. It is based on a double decomposition of the signal: a damped harmonic decomposition combined with a polynomial chaos expansion of the four coefficients of each harmonic term (amplitude, decay constant, pulsation, and phase). These PC expansions are obtained through the least squares method which requires the solution of nonlinear least squares problems for each sample point of the stochastic domain. The use of the surrogate is illustrated on vertically incident plane waves traveling in 1D layered, vertically stratified, isotropic, viscoelastic soil structure with uncertainties in the geological data (geometry, wave velocities, quality factors). Computational tests show that the stochastic coefficients can be efficiently represented with a low-order PC expansion involving few evaluations of the direct model. For the test cases, a global sensitivity analysis is performed in time and frequency domains to investigate the relative impact of the random parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aki, K., Richards, P.G.: Quantitative Seismology, vol. 1. University Science Book (2002)

  2. Alexanderian, A., Le Maître, O., Najm, H., Iskandarani, M., Knio, O.: Multiscale stochastic preconditioners in non-intrusive spectral projection. SIAM J. Sci. Comp. 50(2), 306–340 (2012). https://doi.org/10.1007/s10915-011-9486-2

    Article  Google Scholar 

  3. Chow, P.L.: Stochastic wave equations with polynomial nonlinearity. Ann. Appl. Probab. 12(1), 361–381 (2002). https://doi.org/10.1214/aoap/1015961168

    Article  Google Scholar 

  4. Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)

    Article  Google Scholar 

  5. Constantine, P.G., Eldred, M.S., Phipps, E.T.: Sparse pseudospectral approximation method. Comput. Meth. Appl. Mech. Eng. 229, 1–12 (2012)

    Article  Google Scholar 

  6. Crestaux, T., Le Maître, O., Martinez, J.M.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94(7), 1161–1172 (2009)

    Article  Google Scholar 

  7. De Martin, F.: Influence of the Nonlinear Behavior of Soft Soils on Strong Ground Motions. Ph.D. Thesis, Ecole Centrale Paris, Paris, France (2010)

  8. De Martin, F., Kawase, H., Modaressi, A.: Nonlinear soil response of a borehole station based on one-dimensional inversion during the 2005 west off fukuoka prefecture earthquake. Bull. Seismol. Soc. Am. 100(1), 151–171 (2010). https://doi.org/10.1785/0120090125

    Article  Google Scholar 

  9. Ducellier, A., Kawase, H., Matsushima, S.: Validation of a new velocity structure inversion method based on horizontal-to-vertical (H/V) spectral ratios of earthquake motions in the Tohoku area. Japan. Bull. Seismol. Soc. Am. 103(2A), 958–970 (2013)

    Article  Google Scholar 

  10. Geli, L., Bard, P.Y., Jullien, B.: The effect of topography on earthquake ground motion: a review and new results. Bull. Seismol. Soc. Am. 78(1), 42–63 (1988)

    Google Scholar 

  11. Gerritsma, M., van der Steen, J.B., Vos, P., Karniadakis, G.: Time- dependent generalized polynomial chaos. J. Comput. Phys. 229(22), 8333–8363 (2010). https://doi.org/10.1016/j.jcp.2010.07.020. http://www.sciencedirect.com/science/article/pii/S0021999110004134

    Article  Google Scholar 

  12. Ghanem, R., Spanos, S.: Stochastic Finite Elements: A Spectral Approach. Springer (1991)

  13. Haskell, N.A.: The dispersion of surface waves in multilayered media. Bull. Seismol. Soc. Am. 43, 17–34 (1953)

    Google Scholar 

  14. Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19, 293–325 (1948)

    Article  Google Scholar 

  15. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52(1), 1–17 (1996)

    Article  Google Scholar 

  16. Iskandarani, M., Wang, S., Srinivasan, A., Carlisle, T.W., Winokur, J., Knio, O.: An overview of uncertainty quantification techniques with application to oceanic and oil-spill simulations. J. Geophys. Res. Oceans 121(4), 2789–2808 (2016). https://doi.org/10.1002/2015JC011366

    Article  Google Scholar 

  17. Kiyono, J., Toki, K., Sato, T.: Development of stochastic discrete wavenumber method for seismic response analysis of the ground with irregular interfaces. In: Earthquake Resistant Construction and Design, vol. 1, pp. 69–76. Balkema (1994)

  18. Kramer, S.L.: Geotechnical Earthquake Engineering. Pearson Education India (1996)

  19. Kristekova, M., Kristek, J., Moczo, P.: Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals. Geophys. J. Int. 178(2), 813–825 (2009)

    Article  Google Scholar 

  20. Kumaresan, R., Tufts, D.W.: Estimation of frequencies of multiple sinusoids: making linear prediction perform like maximum likelihood. Proc. IEEE 70(9), 975–989 (1982)

    Article  Google Scholar 

  21. Le Maître, O., Knio, O.: Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics. Scientific Computation Springer (2010)

  22. Mandelshtam, V.A., Taylor, H. S.: Harmonic inversion of time signals and its applications. J. Chem. Phys. 107(17), 6756–6769 (1997) http://scitation.aip.org/content/aip/journal/jcp/107/17/10.1063/1.475324

    Article  Google Scholar 

  23. Mandelshtam, V.A., Taylor, H.S.: Erratum: “harmonic inversion of time signals and its applications” [j. chem. phys. 107, 6756 (1997)]. J. Chem. Phys. 109(10), 4128–4128 (1998). https://doi.org/10.1063/1.477013

    Article  Google Scholar 

  24. Manolis, G.D.: Stochastic soil dynamics. Soil Dyn. Earthq. Eng. 22(1), 3–15 (2002). https://doi.org/10.1016/S0267-7261(01)00055-0. http://www.sciencedirect.com/science/article/pii/S0267726101000550

    Article  Google Scholar 

  25. Manolis, G.D., Karakostas, C.: A green’s function method to sh-wave motion in a random continuum. Eng. Anal. Bound. Elem. 27, 93–100 (2003)

    Article  Google Scholar 

  26. Manolis, G.D., Shaw, R.: Harmonic wave-propagation through viscoelastic heterogeneous media exhibiting mild stochasticity - i. fundamental solutions. Soil Dyn. Earthq. Eng. 15(2), 119–127 (1996)

    Article  Google Scholar 

  27. Manolis, G.D., Shaw, R.: Harmonic wave propagation through viscoelastic heterogeneous media exhibiting mild stochasticity — ii. applications. Soil Dyn. Earthq. Eng. 15(2), 129–139 (1996). https://doi.org/10.1016/0267-7261(95)00024-0. http://www.sciencedirect.com/science/article/pii/0267726195000240

    Article  Google Scholar 

  28. Maufroy, E., Chaljub, E., Hollender, F., Kristek, J., Moczo, P., Klin, P., Priolo, E., Iwaki, A., Iwata, T., Etienne, V., De Martin, F., Theodulidis, N., Manakou, M., Guyonnet-Benaize, C., Pitilakis, K., Bard, P.Y.: Earthquake ground motion in the mygdonian basin, Greece: The e2vp verification and validation of 3d numerical simulation up to 4 hz. Bull. Seismol. Soc. Am. http://www.bssaonline.org/content/early/2015/05/12/0120140228.abstract; https://www.researchgate.net/profile/Emeline_Maufroy/publication/273909178_Earthquake_Ground_Motion_in_the_Mygdonian_Basin_Greece_The_E2VP_Verification_and_Validation_of_3D_Numerical_Simulation_up_to_4_Hz/links/555d9dda08ae86c06b5db0f8.pdf (2015)

  29. Millet, A., Morien, P.L.: On a nonlinear stochastic wave equation in the plane: existence and uniqueness of the solution. Ann. Appl. Probab. 11(3), 922–951 (2001). https://doi.org/10.1214/aoap/1015345353

    Article  Google Scholar 

  30. Molkenthin, C., Scherbaum, F., Griewank, A., Kuehn, N., Stafford, P.: A study of the sensitivity of response spectral amplitudes on seismological parameters using algorithmic differentiation. Bull. Seismol. Soc. Am. 104, 2240–2252 (2014). https://doi.org/10.1785/0120140022

    Article  Google Scholar 

  31. Petterson, M., Iaccarino, G., Nordström, J.: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Mathematical Engineering, Springer (2015)

  32. Ricker, N.: The form and laws of propagation of seismic wavelets. Geophysics 18(1), 10–40 (1953). https://doi.org/10.1190/1.1437843

    Article  Google Scholar 

  33. Rousseau, M., Cerdan, O., Ern, A., Maître, O.L., Sochala, P.: Study of overland flow with uncertain infiltration using stochastic tools. Adv. Water. Resour. 38, 1–12 (2012). https://doi.org/10.1016/j.advwatres.2011.12.004. http://www.sciencedirect.com/science/article/pii/S0309170811002338

    Article  Google Scholar 

  34. Sepahvand, K., Marburg, S., Hardtke, H.J.: Numerical solution of one-dimensional wave equation with stochastic parameters using generalized polynomial chaos expansion. J. Comput. Acous. 15 (04), 579–593 (2007). https://doi.org/10.1142/S0218396X07003524. http://www.worldscientific.com/doi/abs/10.1142/S0218396X07003524

    Article  Google Scholar 

  35. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4(240-243), 123 (1963)

    Google Scholar 

  36. Sobol, I.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)

    Google Scholar 

  37. Thomson, W.: Transmission of elastic waves through a stratified solid. J. Appl. Phys. 21, 89–93 (1950)

    Article  Google Scholar 

  38. Tikhonov, A., Arsenin, V.: Solutions of Ill-Posed Problems. Scripta Series in Mathematics. Winston. https://books.google.fr/books?id=ECrvAAAAMAAJ (1977)

  39. Turányi, T.: Sensitivity analysis of complex kinetic systems, tools and applications. J. Math. Chem. 5(3), 203–248 (1990). https://doi.org/10.1007/BF01166355

    Article  Google Scholar 

  40. Walsh, J.B.: On numerical solutions of the stochastic wave equation. Illinois J. Math. 50(1–4), 991–1018 (2006) http://projecteuclid.org/euclid.ijm/1258059497

    Google Scholar 

  41. Wang, F., Sett, K.: Time-domain stochastic finite element simulation of uncertain seismic wave propagation through uncertain heterogeneous solids. Soil Dyn. Earthq. Eng. 88, 369–385 (2016). https://doi.org/10.1016/j.soildyn.2016.07.011. http://www.sciencedirect.com/science/article/pii/S0267726116300896

    Article  Google Scholar 

  42. Wirgin, A., Bard, P.Y.: Effects of buildings on the duration and amplitude of ground motion in Mexico city. Bull. Seismol. Soc. Am. 86(3), 914 (1996)

    Google Scholar 

  43. Xiu, D., Karniadakis, G.: The wiener-askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by internal fundings of the BRGM (French Geological Survey). P. Sochala is greatful to O. Le Maître for his constructive comments on the polynomial chaos expansion and to F. Smaï for fruitful discussions concerning the harmonic inversion problem. F. De Martin is thankful to F. Hollender, E. Chaljub, E. Maufroy, and P.-Y. Bard for providing the data used for the double layer test case and for their contributions to determine the distributions of the uncertain parameters. The Thomson–Haskell propapagator matrix computations have been done on the 32-cores Intel ®; cluster provided by P. Thierry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sochala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sochala, P., De Martin, F. Surrogate combining harmonic decomposition and polynomial chaos for seismic shear waves in uncertain media. Comput Geosci 22, 125–144 (2018). https://doi.org/10.1007/s10596-017-9677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9677-5

Keywords

Navigation