Skip to main content
Log in

Process-based forward numerical ecological modeling for carbonate sedimentary basins

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Nowadays, numerical modeling is a common tool used in the study of sedimentary basins, since it allows to quantify the processes simulated and to determine interactions among them. One of such programs is SIMSAFADIM-CLASTIC, a 3D forward-model process-based code to simulate the sedimentation in a marine basin at a geological time scale. It models the fluid flow, siliciclastic transport and sedimentation, and carbonate production. In this article, we present the last improvements in the carbonate production model, in particular about the usage of Generalized Lotka-Volterra equations that include logistic growth and interaction among species. Logistic growth is constrained by environmental parameters such as water depth, energy of the medium, and depositional profile. The environmental parameters are converted to factors and combined into one single environmental value to model the evolution of species. The interaction among species is quantified using the community matrix that captures the beneficial or detrimental effects of the presence of each species on the other. A theoretical example of a carbonate ramp is computed to show the interaction among carbonate and siliciclastic sediment, the effect of environmental parameters to the modeled species associations, and the interaction among these species associations. The distribution of the modeled species associations in the theoretical example presented is compared with the carbonate Oligocene-Miocene Asmari Formation in Iran and the Miocene Ragusa Platform in Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amirshahkarami, M., Vaziri-Moghaddam, H., Taheri, A.: Sedimentary facies and sequence stratigraphy of the Asmari Formation at Chaman-Bolbol, Zagros Basin, Iran. J. Asia Earth Sci. 29(5–6), 947–959 (2007). doi:10.1016/j.jseaes.2006.06.008

    Article  Google Scholar 

  2. Beavington-Penney, S.J., Racey, A.: Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth Sci. Rev. 67(3–4), 219–265 (2004). doi:10.1016/j.earscirev.2004.02.005

    Article  Google Scholar 

  3. Bice, D.M.: Computer simulation of carbonate platform and basin systems. Kans. Geol. Surv. Bull. 233, 431–447 (1991)

    Google Scholar 

  4. Bitzer, K., Salas, R.: Simulating carbonate and mixed carbonate-clastic sedimentation using predator-prey models. In: Merriam, D.F., Davis, J.C. (eds.) Geologic Modeling and Simulation, Computer Applications in the Earth Sciences, pp 169–204. Springer, New York (2001)

    Chapter  Google Scholar 

  5. Bitzer, K., Salas, R.: SIMSAFADIM: three-dimensional simulation of stratigraphic architecture and facies distribution modeling of carbonate sediments. Comput. Geosci. 28(10), 1177–1192 (2002). doi:10.1016/S0098-3004(02)00037-7

  6. Bosence, D., Waltham, D.: Computer modeling the internal architecture of carbonate platforms. Geology 18(1), 26–30 (1990). doi:10.1130/0091-7613(1990)018%3C0026:CMTIAO%3E2.3.CO;2

    Article  Google Scholar 

  7. Bosscher, H., Schlager, W.: Computer simulation of reef growth. Sedimentology 39(3), 503–512 (1992). doi:10.1111/j.1365-3091.1992.tb02130.x

    Article  Google Scholar 

  8. Bosscher, H., Southam, J.: CARBPLAT—a computer model to simulate the development of carbonate platforms. Geology 20(3), 235–238 (1992). doi:10.1130/0091-7613(1992)020%3C0235:CACMTS%3E2.3.CO;2

    Article  Google Scholar 

  9. Boylan, A.L., Waltham, D.A., Bosence, D.W.J., Badenas, B., Aurell, M.: Digital rocks: linking forward modelling to carbonate facies. Basin Res. 14(3), 401–415 (2002). doi:10.1046/j.1365-2117.2002.00180.x

    Article  Google Scholar 

  10. Burgess, P.M.: CarboCAT: a cellular automata model of heterogeneous carbonate strata. Comput. Geosci. 53, 129–140 (2013). doi:10.1016/j.cageo.2011.08.026

    Article  Google Scholar 

  11. Burgess, P.M., Emery, D.J.: Sensitive dependence, divergence and unpredictable behavior in a stratigraphic forward model of a carbonate system. Geol. Soc. Lond. Spec. Publ. 239(1), 77–94 (2004). doi:10.1144/GSL.SP.2004.239.01.06

    Article  Google Scholar 

  12. Burgess, P.M., Wright, V.P., Emery, D.: Numerical forward modelling of peritidal carbonate parasequence development: implications for outcrop interpretation. Basin Res. 13(1), 1–16 (2001). doi:10.1046/j.1365-2117.2001.00130.x

  13. Carmona, A., Clavera-Gispert, R., Gratacós, O., Hardy, S.: Modelling syntectonic sedimentation: combining a discrete element model of tectonic deformation and a process-based sedimentary model in 3d. Math. Geosci. 42(5), 519–534 (2010). doi:10.1007/s11004-010-9293-6

    Article  Google Scholar 

  14. Chappell, J.: Coral morphology, diversity and reef growth. Nature 286(5770), 249–252 (1980). doi:10.1038/286249a0

    Article  Google Scholar 

  15. Clavera-Gispert, R., Carmona, A., Gratacós, S., Tolosana-Delgado, R.: Incorporating nutrients as a limiting factor in carbonate modelling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 329–330, 150–157 (2012). doi:10.1016/j.palaeo.2012.02.025

    Article  Google Scholar 

  16. Cuevas Castell, J.M., Betzler, C., Rössler, J., Hüssner, H., Peinl, M.: Integrating outcrop data and forward computer modelling to unravel the development of a Messinian carbonate platform in SE Spain (Sorbas Basin). Sedimentology 54(2), 423–441 (2007). doi:10.1111/j.1365-3091.2006.00843.x

    Article  Google Scholar 

  17. Demicco, R.V.: CYCOPATH 2d—a two-dimensional, forward model of cyclic sedimentation on carbonate platforms. Comput. Geosci. 24(5), 405–423 (1998). doi:10.1016/S0098-3004(98)00024-7

    Article  Google Scholar 

  18. Eppley, R.W.: Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972)

    Google Scholar 

  19. Fay, T.H., Greeff, J.C.: A three species competition model as a decision support tool. Ecol. Model. 211 (1–2), 142–152 (2008). doi:10.1016/j.ecolmodel.2007.08.023

    Article  Google Scholar 

  20. Gillman, M.: An Introduction to Mathematical Models in Ecology and Evolution: Time and Space. Wiley, New York (2009)

    Google Scholar 

  21. Granjeon, D., Joseph, P.: Concepts and applications of a 3-D multiple lithology, diffusive model in stratigraphic modeling. Numer. Exp. Stratigr. 62, 197–211 (1999). doi:10.2110/pec.99.62.0197

    Google Scholar 

  22. Gratacós, O., Bitzer, K., Casamor, J.L., Cabrera, L., Calafat, A., Canals, M., Roca, E.: SIMSAFADIM-CLASTIC: a new approach to mathematical 3d forward simulation modelling for terrigenous and carbonate marine sedimentation. Geol. Acta 7(3), 311–322 (2009). doi:10.1344/105.000001390

    Article  Google Scholar 

  23. Gratacós, O., Bitzer, K., Casamor, J.L., Cabrera, L., Calafat, A., Canals, M., Roca, E.: Simulating transport and deposition of clastic sediments in an elongate basin using the SIMSAFADIM-CLASTIC program: the Camarasa artificial lake case study (NE Spain). Sediment. Geol. 222(1–2), 16–26 (2009). doi:10.1016/j.sedgeo.2009.05.010

    Article  Google Scholar 

  24. Hairer, E.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd rev. ed edn. No. 8 in Springer Series in Computational Mathematics. Springer, Heidelberg, London (2009)

    Google Scholar 

  25. Hill, J., Tetzlaff, D., Curtis, A., Wood, R.: Modeling shallow marine carbonate depositional systems. Comput. Geosci. 35(9), 1862–1874 (2009). doi:10.1016/j.cageo.2008.12.006

    Article  Google Scholar 

  26. Hüssner, H., Roessler, J., Betzler, C., Petschick, R., Peinl, M.: Testing 3d computer simulation of carbonate platform growth with REPRO: the Miocene Llucmajor carbonate platform (Mallorca). Palaeogeogr. Palaeoclimatol. Palaeoecol. 175(1–4), 239–247 (2001). doi:10.1016/S0031-0182(01)00374-1

    Article  Google Scholar 

  27. Hubbard, D.K., Scaturo, D.: Growth rates of seven species of scleractinean corals from Cane Bay and Salt River, St. Croix, USVI. Bull. Mar. Sci. 36(2), 325–338 (1985)

    Google Scholar 

  28. Kleypas, J.A., Mcmanus, J.W., Meñez, L.a.B.: Environmental limits to coral reef development: where do we draw the line?. Am. Zool. 39(1), 146–159 (1999). doi:10.1093/icb/39.1.146

    Article  Google Scholar 

  29. Letourneur, Y., Ruitton, S., Sartoretto, S.: Environmental and benthic habitat factors structuring the spatial distribution of a summer infralittoral fish assemblage in the north-western Mediterranean Sea. J. Mar. Biol. Assoc. U. K. 83(01), 193–204 (2003). doi:10.1017/S0025315403006970h

    Article  Google Scholar 

  30. Morse, J.W., Gledhill, D.K., Millero, F.J.: Caco3 precipitation kinetics in waters from the great Bahama bank: implications for the relationship between bank hydrochemistry and whitings. Geochim. Cosmochim. Acta 67 (15), 2819–2826 (2003). doi:10.1016/S0016-7037(03)00103-0

    Article  Google Scholar 

  31. Morse, J.W., Mackenzie, F.T.: Geochemistry of Sedimentary Carbonates. Elsevier, Amsterdam (1990)

    Google Scholar 

  32. Nordlund, U.: FUZZIM: forward stratigraphic modeling made simple. Comput. Geosci. 25(4), 449–456 (1999). doi:10.1016/S0098-3004(98)00151-4

    Article  Google Scholar 

  33. Pastor, J.: Mathematical Ecology of Populations and Ecosystems. Wiley-Blackwell, New Jersey (2008)

    Google Scholar 

  34. Paterson, R.J., Whitaker, F.F., Jones, G.D., Smart, P.L., Waltham, D., Felce, G.: Accommodation and sedimentary architecture of isolated icehouse carbonate platforms: insights from forward modeling with CARB3d + . J. Sediment. Res. 76(10), 1162–1182 (2006). doi:10.2110/jsr.2006.113

    Article  Google Scholar 

  35. Read, J.F., Osleger, D., Elrick, M.: Two-dimensional modeling of carbonate ramp sequences and component cycles. Kans. Geol. Surv. Bull. 233, 473–488 (1991)

    Google Scholar 

  36. Roberts, A.: The stability of a feasible random ecosystem. Nature 251(5476), 607–608 (1974). doi:10.1038/251607a0

    Article  Google Scholar 

  37. Roff, J.C., Taylor, M.E., Laughren, J.: Geophysical approaches to the classification, delineation and monitoring of marine habitats and their communities. Aquat. Conserv. Mar. Freshwat. Ecosyst. 13(1), 77–90 (2003). doi:10.1002/aqc.525

    Article  Google Scholar 

  38. Ruchonnet, C., Kindler, P.: Facies Models and Geometries of the Ragusa Platform (SE Sicily, Italy) Near the Serravallian–Tortonian Boundary. In: Mutti, R., Piller, W., Betzler, C. (eds.) Carbonate Systems During the Oligocene–Miocene Climatic Transition, pp 71–88. Wiley-Blackwell, Chichester (2012)

    Chapter  Google Scholar 

  39. Schlager, W.: Carbonate sedimentology and sequence stratigraphy. No. 8 in Concepts in Sedimentology and Paleontology (CSP) Series. SEPM Soc for Sed Geology (2005)

  40. Shatalov, M., Greeff, J., Joubert, S., Fedotov, I.: Parametric identification of the model with one predator and two prey species, pp. 101–109 (2008)

  41. Steefel, C., MacQuarrie, K.: Approaches to modeling of reactive transport in porous media. In: Lichtner, P., Steefel, C., Oelkers, E. (eds.) Reactive Transport in Porous Media, Reviews in Mineralogy, vol. 34, p. 85–129 (1996)

    Google Scholar 

  42. Steller, D.L., Foster, M.S.: Environmental factors influencing distribution and morphology of rhodoliths in Bahía Concepción, B.C.S., México. J. Exp. Mar. Biol. Ecol. 194(2), 201–212 (1995). doi:10.1016/0022-0981(95)00086-0

    Article  Google Scholar 

  43. Tregonning, K., Roberts, A.: Complex systems which evolve towards homeostasis. Nature 281(5732), 563–564 (1979). doi:10.1038/281563a0

    Article  Google Scholar 

  44. Warrlich, G.M.D., Waltham, D.A., Bosence, D.W.J.: Quantifying the sequence stratigraphy and drowning mechanisms of atolls using a new 3-D forward stratigraphic modelling program (CARBONATE 3d). Basin Res. 14 (3), 379–400 (2002). doi:10.1046/j.1365-2117.2002.00181.x

    Article  Google Scholar 

  45. Westphal, H., Riegl, B., Eberli, G.P.: Carbonate Depositional Systems: Assessing Dimensions and Controlling Parameters: The Bahamas, Belize and the Persian/Arabian Gulf. Springer Science & Business Media, New York (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Clavera-Gispert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clavera-Gispert, R., Gratacós, Ò., Carmona, A. et al. Process-based forward numerical ecological modeling for carbonate sedimentary basins. Comput Geosci 21, 373–391 (2017). https://doi.org/10.1007/s10596-017-9617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9617-4

Keywords

Navigation