Skip to main content
Log in

A model for CO2 storage and seismic monitoring combining multiphase fluid flow and wave propagation simulators. The Sleipner-field case

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The main objective of this paper is to use a flow simulator to represent the CO2 storage and combine it with a wave propagation simulator in order to obtain synthetic seismograms qualitatively matching time-lapse real field data. The procedure is applied to the Utsira formation at Sleipner field. The field data at the site available to us is a collection of seismic sections (time-lapse seismics) used to monitor the CO2 storage. An estimate of the CO2 injection rate and the location of the injection point are known. Using these data, we build a geological model, including intramudstone layers with openings, whose coordinates are defined by performing a qualitative match of the field seismic data. The flow simulator parameters and the petrophysical properties are updated to obtain CO2 saturation maps, including CO2 plumes, so that the synthetic seismic images resemble the real data. The geological model is based on a porous-media constitutive equation. It considers a poroelastic description of the Utsira formation (a shaly sandstone), based on porosity and clay content, and takes into account the variation of the properties with pore pressure and fluid saturation. Moreover, the model considers the geometrical features of the formations, including the presence of shale seals and fractures. We also assume fractal variations of the petrophysical properties. The numerical simulation of the CO2-brine flow is based on the Black-Oil formulation, which uses the pressure-volume-temperature (PVT) behavior as a simplified thermodynamic model. The corresponding equations are solved using a finite difference IMPES formulation. Using the resulting saturation and pore-pressure maps, we determine an equivalent viscoelastic medium at the macroscale, formulated in the space-frequency domain. Wave attenuation and velocity dispersion, caused by heterogeneities formed of gas patches, are described with White’s mesoscopic model. The viscoelastic wave equation is solved in the space-frequency domain for a collection of frequencies of interest using a finite-element iterative domain decomposition algorithm. The space-time solution is recovered by a discrete inverse Fourier transform, allowing us to obtain our synthetic seismograms. In the numerical examples, we determine a set of flow and petrophysical parameters allowing us to obtain synthetic seismograms resembling actual field data. In particular, this approach yields CO2 accumulations below the mudstone layers and synthetic seismograms which successfully reproduce the typical pushdown effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arts, R., Chadwick, A., Eiken, O., Thibeau, S., Nooner, S.: Ten years of experience of monitoring CO2 injection in the Utsira sand at Sleipner, offshore Norway. First Break 26, 65–72 (2008)

    Google Scholar 

  2. Chadwick, A., Arts, R., Eiken, O.: 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea. In: Dore, A.G., Vincent, B. (eds.) Petroleum Geology: North West Europe and Global Perspectives - Proc. 6th Petroleum Geology Conference, pp 1385–1399 (2005)

  3. Carcione, J.M., Picotti, S.: P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties. Geophysics 71(3), O1–O8 (2006)

    Article  Google Scholar 

  4. Santos, J.E., Rubino, J.G., Ravazzoli, C.L.: Modeling mesoscopic attenuation in a highly heterogeneous Biot’s medium employing an equivalent viscoelastic model. Proceedings of the 78th Annual International Meeting SEG, 9-14 November, Las Vegas, USA, 2212–2215 (2008)

  5. Picotti, S., Carcione, J.M., Gei, D., Rossi, G., Santos, J.E.: Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field. J. Geophys. Res. 117, B06103 1–18 (2012)

    Article  Google Scholar 

  6. Carcione, J.M., Helbig, K., Helle, H.B.: Effects of pressure and saturating fluid on wave velocity and attenuation of anisotropic rocks. Int. J. Rock Mech. Min. Sci. 40, 389–403 (2003)

    Article  Google Scholar 

  7. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Elsevier Applied Science Publishers, Great Britain (1985)

    Google Scholar 

  8. Hassanzadeh, H., Pooladi-Darvish, M., Elsharkawy, A., Keith, D., Leonenko, Y.: Predicting PVT data for CO2-brine mixtures for black-oil simulation of CO2 geological storage. Int. J. Greenhouse Gas Control 2, 65–77 (2008)

    Article  Google Scholar 

  9. Muller, T., Gurevich, B., Lebedev, M.: Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks – a review. Geophysics 75, A147–A164 (2010)

    Article  Google Scholar 

  10. Pride, S., Berryman, J., Harris, J.: Seismic attenuation due to wave-induced flow. J. Geophys. Res. 109, B01201 (2004). doi:10.1029/2003JB002639

    Article  Google Scholar 

  11. Picotti, S., Carcione, J., Rubino, G., Santos, J., Cavallini, F.: A viscoelastic representation of wave attenuation in porous media. Comput. Geosci. 36, 44–53 (2010)

    Article  Google Scholar 

  12. Carcione, J.M.: Wave Fields in Real Media. Theory and Numerical Simulation of Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, Elsevier, Third edition, revised and extended (2014)

  13. White, J.E., Mikhaylova, N.G., Lyakhovitskiy, F.M.: Low-frequency seismic waves in fluid-saturated layered rocks. Izvestija Academy of Sciences USSR. Phys. Solid Earth 10, 654–659 (1975)

    Google Scholar 

  14. Dai, N., Vafidis, A., Kanasewich, E.R.: Wave Propagation in heterogeneous, porous media: A velocity stress, finite difference method. Geophysics 60(2), 327–340 (1995)

    Article  Google Scholar 

  15. Chadwick, R.A., Noy, D., Arts, R., Eiken, O.: Latest time-lapse seismic data from Sleipner yield new insights into CO2 plume development. Energy Procedia, 2103–2110 (2009)

  16. Chadwick, R.A., Williams, G., Delepine, N., Clochard, V., Labat, K., Sturton, S., Buddensiek, M., Dillen, M., Nickel, M., Lima, A., Arts, R., Neele, F., Rossi, G.: Quantitative analysis of time-lapse seismic monitoring data at the Sleipner CO2 storage operation. Lead. Edge 29, 170–177 (2010)

    Article  Google Scholar 

  17. Jones, K.: On the differential form of Darcy’s law. J. Geophys. Res. 67(2), 731–732 (1962)

    Article  Google Scholar 

  18. Bear, J.: Dynamics of fluids in porous media. American Elsevier Publishing Company, New York (1972)

    Google Scholar 

  19. Fanchi, J.: Principles of Applied Reservoir Simulation. Gulf Professional Publishing Company, Houston (1997)

    Google Scholar 

  20. Savioli, G., Bidner, M.S.: Simulation of the oil and gas flow toward a well - a stability analysis. J. Pet. Sci. Eng. 48, 53–69 (2005)

    Article  Google Scholar 

  21. Ha, T., Santos, J.E., Sheen, D.: Nonconforming finite element methods for the simulation of waves in viscoelastic solids. Comput. Meth. Appl. Mech. Engrg. 191, 5647–5670 (2002)

    Article  Google Scholar 

  22. Carcione, J., Gurevich, B., Cavallini, B.F.: A generalized Biot-Gassmann model for the acoustic properties of shaley sandstones. Geophys. Prosp. 48, 539–557 (2000)

    Article  Google Scholar 

  23. Hashin, Z., Shtrikman, S.: A variational approach to the elastic behavior of multiphase minerals. J. Mech. Phys. Solids 11(2), 127–140 (1963)

    Article  Google Scholar 

  24. Krief, M., Garat, J., Stellingwerff, J., Ventre, J.: A petrophysical interpretation using the velocities of P and S waves (full waveform sonic). Log Anal. 31, 355–369 (1990)

    Google Scholar 

  25. Peng, D.Y., Robinson, K.I.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1), 59–64 (1976)

    Article  Google Scholar 

  26. Santos, J.E., Savioli, G., Macias, L., Carcione, J., Gei, D.: Influence of capillary pressure on CO2 storage and monitoring. Proceedings of the 84th Annual International Meeting SEG, 26-31 October, Denver, USA, 2212–2215 (2014)

  27. Spycher, N., Pruess, K.: CO2-H2O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12-100 C and up to 600 bar. Geochim. Cosmochim, Acta 69(13), 3309–3320 (2005)

    Article  Google Scholar 

  28. Frankel, A., Clayton, R.W.: Finite difference simulation of seismic wave scattering: implications for the propagation of short period seismic waves in the crust and models of crustal heterogeneity. J. Geophys. Res. 91, 6465–6489 (1986)

    Article  Google Scholar 

  29. Carcione, J.M., Böehm, G., Marchetti, A.: Simulation of a CMP seismic section. J. Seism. Explor. 3, 381–396 (1994)

    Google Scholar 

  30. Douglas, J. Jr., Santos, J.E., Sheen, D., Ye, X.: Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. RAIRO Math. Model Numer. Anal. (M2AN) 33, 747–770 (1999)

    Article  Google Scholar 

  31. Zyserman, F.I., Gauzellino, P.M., Santos, J.E.: Dispersion analysis of a non-conforming finite element method for the Helmholtz and elastodynamic equations. Int. J. Numer. Meth. Engng. 58, 1381–1395 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela B. Savioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savioli, G.B., Santos, J.E., Carcione, J.M. et al. A model for CO2 storage and seismic monitoring combining multiphase fluid flow and wave propagation simulators. The Sleipner-field case. Comput Geosci 21, 223–239 (2017). https://doi.org/10.1007/s10596-016-9607-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-016-9607-y

Keywords

Navigation