Skip to main content
Log in

Constraint handling for gradient-based optimization of compositional reservoir flow

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The development of adjoint procedures for general compositional flow problems is much more challenging than for oil-water problems, due to significantly higher complexity of the underlying physics. The treatment of nondifferentiable constraints, an example of which is a maximum gas rate specification in injection or production wells, when the control variables are well-bottom-hole pressures, poses an additional major challenge. A new formal approach for handling these constraints is presented and compared against a formal treatment within the optimizer employing constraint lumping and a simpler heuristic treatment in the forward model. The three constraint-handling methods are benchmarked for three example cases of increasing complexity. Moreover, the new approach allows the optimizer to converge to optimal solutions exhibiting higher objective values, since unlike the formal lumping-based methods, where a pressure reduction suggested by the optimizer propagates through the smoothing function to all well rates, it handles constraints individually on a per well and per time step basis. The numerical examples show that the new formal constraint-handling approach allows the optimizer to converge significantly faster than formal lumping-based techniques independently of the initial guess used for the optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asheim, H.: Maximization of water sweep efficiency by controlling production and injection rates. In: SPE Paper 18365 Presented at the SPE European Petroleum Conference. London (1988)

  2. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers, London (1979)

  3. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (1999)

  4. Brouwer, D.R., Jansen, J.D.: Dynamic optimization of water flooding with smart wells using optimal control theory. SPE J. 9(4), 391–402 (2004)

    Article  Google Scholar 

  5. Cao, H.: Development of techniques for general purpose simulators. Ph.D. thesis, Stanford University (2002)

  6. Chavent, G., Dupuy, M., Lemonnier, P.: History matching by use of optimal control theory. SPE J. 15, 74–86 (1975). doi:10.2118/4627-PA

    Article  Google Scholar 

  7. Chen, C.L., Reynolds, A.: Robust constrained optimization of short- and long-term net present value for closed-loop reservoir management. SPE J. 17(3), 849–864 (2012)

    Article  Google Scholar 

  8. Chen, W., Gavalas, G., Wasserman, M.: A new algorithm for automatic history matching. SPE J. 14 (6), 593–608 (1974)

    Article  Google Scholar 

  9. Chen, Y., Oliver, D.: Ensemble-based closed-loop optimization applied to Brugge field. SPE Reserv. Eval. Eng. 13(1), 56–71 (2010)

    Article  Google Scholar 

  10. Coats, K.: An equation of state compositional model. SPE J. 20(5), 363–376 (1980)

    Article  Google Scholar 

  11. De Montleau, P., Cominelli, A., Neylon, K., Rowan, D., Pallister, I., Tesaker, O., Nygard, I.: Production optimization under constraints using adjoint gradients. In: 10th European Conference on the Mathematics of Oil Recovery (2006)

  12. Doublet, D., Aanonsen, S., Tai, X.: An efficient method for smart well production optimisation. J. Petroleum Sci. Eng. 69(1–2), 25–39 (2009)

    Article  Google Scholar 

  13. Echeverría Ciaurri, D., Isebor, O.J., Durlofsky, L.J.: Application of derivative-free methologies to generally constrained oil production optimisation problems. Int. J. Math. Modell. Numer. Optim. 2, 134–161 (2011)

    Google Scholar 

  14. Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation, OUP Oxford (2005)

  15. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)

    Article  Google Scholar 

  16. Han, C., Wallis, J., Sarma, P., Li, G., Schrader, M.L., Chen, W.: Adaptation of the CPR preconditioner for efficient solution of the adjoint equation. SPE J. 18(2), 207–213 (2013). doi:10.2118/141300-PA

    Article  Google Scholar 

  17. Jansen, J.D.: Adjoint-based optimization of multi-phase flow through porous media - a review. Comput. Fluids 46(1), 40–51 (2011). doi:10.1016/j.compfluid.2010.09.039

    Article  Google Scholar 

  18. Kourounis, D., Durlofsky, L.J., Jansen, J.D., Aziz, K.: Adjoint formulation and constraint handling for gradient-based optimization of compositional reservoir flow. Computational Geosciences, pp. 1–21 (2014). doi:10.1007/s10596-013-9385-8

  19. Kraaijevanger, J., Egberts, P., Valstar, J., Buurman, H.: Optimal waterflood design using the adjoint method. In: Paper SPE 105764 Presented at the SPE Reservoir Simulation Symposium. Houston, USA (2007). doi:10.2118/105764-MS

  20. Li, R., Reynolds, A., Oliver, D.: History matching of three-phase flow production data. SPE J. 8(4), 328–340 (2003). doi:10.2118/87336-PA

    Article  Google Scholar 

  21. Lien, M., Brouwer, D., Manseth, T., Jansen, J.D.: Multiscale regularization of flooding optimization for smart field management. SPE J. 13(2), 195–204 (2008)

    Article  Google Scholar 

  22. Liu, W., Ramirez, W., Qi, Y.: Optimal control of steam flooding. SPE Adv. Technol. Series 1(2), 73–82 (1993)

    Article  Google Scholar 

  23. Mehos, G., Ramirez, W.: Use of optimal control theory to optimize carbon dioxide miscible-flooding enhanced oil recovery. J. Petroleum Sci. Eng. 2(4), 247–260 (1989)

    Article  Google Scholar 

  24. NTNU (IO Center): Center of Integrated Operations in Petroleum Industry. Website (2011). http://www.ipt.ntnu.no/norne

  25. Oliver, D., Reynolds, A., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, Cambridge (2008)

  26. Ramirez, W.: Application of Optimal Control Theory to Enhanced Oil Recovery. Elsevier Science Ltd, Amsterdam (1987)

  27. Sarma, P., Chen, W., Durlofsky, L.J., Aziz, K.: Production optimization with adjoint models under nonlinear control-state path inequality constraints. SPE Reserv. Eval. Eng. 11(2), 326–339 (2008)

    Article  Google Scholar 

  28. Sarma, P., Durlofsky, L.J., Aziz, K., Chen, W.H.: Efficient real-time reservoir management using adjoint-based optimal control and model updating. Comput. Geosci. 10 (1), 3–36 (2006). doi: 10.1007/s10596-005-9009-z

    Article  Google Scholar 

  29. Sudaryanto, B., Yortsos, Y.: Optimization of fluid front dynamics in porous media using rate control. Phys. Fluids 12(7), 1656–1670 (2000)

    Article  Google Scholar 

  30. Suwartadi, E., Krogstad, S., Foss, B.: Nonlinear output constraints handling for production optimization of oil reservoirs. Comput. Geosci. 16, 499–517 (2012)

    Article  Google Scholar 

  31. Van Essen, G., Zandvliet, M., Van den Hof, P., Bosgra, O., Jansen, J.D.: Robust waterflooding optimization of multiple geological scenarios. SPE J. 14(1), 202–210 (2009). doi:10.2118/102913-PA

    Article  Google Scholar 

  32. Virnovski, G.: Waterflooding strategy design using optimal control theory. In: 6th European IOR Symposium, pp 437–446. Stavanger, Norway (1991)

  33. Voskov, D., Tchelepi, H.: Comparison of nonlinear formulations for two-phase multi-component EoS based simulation. J. Petroleum Sci.Eng. 82–83, 101–111 (2012). doi: 10.1016/j.petrol.2011.10.012

    Article  Google Scholar 

  34. Voskov, D.V., Younis, R., Tchelepi, H.A.: Comparison of nonlinear formulations for isothermal compositional flow simulation. In: SPE paper 118966 Presented at the SPE Reservoir Simulation Symposium. The Woodlands (2009)

  35. Wang, C., Li, G., Reynolds, A.: Production optimization in closed-loop reservoir management. SPE J. 14(3), 506–523 (2009)

    Article  Google Scholar 

  36. Young, L., Stephenson, R.: A generalized compositional approach for reservoir simulation. J. Petroleum Sci. Eng. 23(5), 727–742 (1983). doi:10.2118/10516-PA

    Article  Google Scholar 

  37. Younis, R., Aziz, K.: Parallel automatically differentiable data-types for next-generation simulator development. In: SPE Paper 106493 Presented at the SPE Reservoir Simulation Symposium. Houston (2007). doi:10.2118/106493-MS

  38. Younis, R., Tchelepi, H., Aziz, K.: Adaptively localized continuation-Newton method–Nonlinear solvers that converge all the time. SPE J. 15(2), 526–544 (2010). doi:10.2118/119147-PA. SPE-119147-PA

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drosos Kourounis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kourounis, D., Schenk, O. Constraint handling for gradient-based optimization of compositional reservoir flow. Comput Geosci 19, 1109–1122 (2015). https://doi.org/10.1007/s10596-015-9524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9524-5

Keywords

Navigation