Skip to main content
Log in

The [3+2] cycloaddition reaction as an attractive way for the preparation of nicotine analogs (microreview)

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

In this microreview, the application of [3+2] cycloaddition reactions in the synthesis of nicotine analogs is critically reviewed and analyzed on the basis of available literature data. It was found that [3+2] cycloaddition with the participation of differently functionalized azomethine ylides is particularly well represented. This enables the synthesis of nicotine analogs not available by other routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto, I.; Casida, J. E. Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor; Springer Japan: Tokyo, 1999.

  2. Nicholatos, J. W.; Francisco, A. B.; Bender, C. A.; Yeh, T.; Lugay, F. J.; Salazar, J. E.; Glorioso, C.; Libert, S. Acta Neuropathol. Commun. 2018, 6, 120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bontempi, B.; Whelan, K. T.; Risbrough, V. B.; Lloyd, G. K.; Menzaghi, F. Neuropsychopharmacology 2003, 28, 1235.

    Article  CAS  PubMed  Google Scholar 

  4. Khurana, N.; Ishar, M. P. S.; Gajbhiye, A.; Goel, R. K. Eur. J. Pharmacol. 2011, 662, 22.

    Article  CAS  PubMed  Google Scholar 

  5. Delijewski, M.; Radad, K.; Krewenka, C.; Kranner, B.; Moldzio, R. Planta Med. 2022, 88, 548.

    Article  CAS  PubMed  Google Scholar 

  6. Guslandi, M. Br. J. Clin. Pharmacol. 1999, 48, 481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, W.; Lin, H.; Zou, M.; Yuan, Q.; Huang, Z.; Pan, X.; Zhang, W. Front. Immunol. 2022, 13, 826889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hong, S. W.; Teesdale-Spittle, P.; Page, R.; Ellenbroek, B.; Truman, P. Front. Neurosci. 2022, 16, 885489.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Siadati, S. A.; Rezazadeh, S. Sci. Radices 2022, 01, 46.

    Article  Google Scholar 

  10. Zawadzińska, K.; Gaurav, G. K.; Jasiński, R. Sci. Radices 2022, 1, 69.

    Article  Google Scholar 

  11. Żmigrodzka, M.; Sadowski, M.; Kras, J.; Desler, E.; Demchuk, O. M.; Kula, K. Sci. Radices 2022, 1, 26.

    Article  Google Scholar 

  12. Ríos-Gutiérrez, M.; Domingo, L. R.; Jasiński, R. Phys. Chem. Chem. Phys. 2023, 25, 314.

    Article  Google Scholar 

  13. Żmigrodzka, M.; Dresler, E.; Hordyjewicz-Baran, Z.; Kulesza, R.; Jasiński, R. A Chem. Heterocycl. Compd. 2017, 53, 1161.

    Article  Google Scholar 

  14. Zawadzińska, K.; Ríos-Gutiérrez, M.; Kula, K.; Woliński, P.; Mirosław, B.; Krawczyk, T.; Jasiński, R. Molecules 2021, 26, 6774.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ghandi, M.; Taheri, A.; Abbasi, A. J. Heterocycl. Chem. 2010, 47, 611.

    CAS  Google Scholar 

  16. Rajkumar, V.; Babu, S. A. Indian J. Chem., Sect. A: Inorg., Phys., Theor. Anal. Chem. 2013, 52, 1113.

  17. Pascual-Escudero, A.; González-Esguevillas, M.; Padilla, S.; Adrio, J.; Carretero, J. C. Org. Lett. 2014, 16, 2228.

    Article  CAS  PubMed  Google Scholar 

  18. Caleffi, G. S.; Larranãga, O.; Ferrándiz-Saperas, M.; Costa, P. R. R.; Nájera, C.; de Cózar, A.; Cossió, F. P.; Sansano, J. M. J. Org. Chem. 2019, 84, 10593.

    Article  CAS  PubMed  Google Scholar 

  19. Rajkumar, V.; Babu, S. A. Synlett 2014, 2629.

  20. Rajkumar, V.; Babu, S. A.; Padmavathi, R. Tetrahedron 2016, 72, 5578.

    Article  CAS  Google Scholar 

  21. Liashuk, O. S.; Ryzhov, I. A.; Hryshchuk, O. V.; Vashchenko, B. V.; Melnychuk, P. V.; Volovenko, Y. M.; Grygorenko, O. O. Chem.– Eur. J. 2022, 28, e202202117.

  22. Bastrakov, M. A.; Fedorenko, A. K.; Starosotnikov, A. M.; Shakhnes, A. K. Molecules 2021, 26, 5547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davoren, J. E.; Gray, D. L.; Harris, A. R.; Nason, D. M.; Xu, W. R. Synlett 2010, 2490.

  24. Srihari, P.; Yaragorla, S. R.; Basu, D.; Chandrasekhar, S. Synthesis 2006, 2646.

  25. Villarreal, Y.; Insuasty, B.; Abonia, R.; Ortiz, A.; Quiroga, J. Chem. Heterocycl. Compd. 2019, 55, 352.

    Article  CAS  Google Scholar 

  26. Zhai, H.; Liu, P.; Luo, S.; Fang, F.; Zhao, M. A Org. Lett. 2002, 4, 4385.

    Article  CAS  PubMed  Google Scholar 

  27. Yang, X.; Luo, S.; Fang, F.; Liu, P.; Lu, Y.; He, M.; Zhai, H. Tetrahedron 2006, 62, 2240.

    Article  CAS  Google Scholar 

  28. Zhang, Z.; Dwoskin, L. P.; Crooks, P. A. Tetrahedron Lett. 2011, 52, 2667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Łapczuk.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2023, 59(3), 109–111

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Łapczuk, A. The [3+2] cycloaddition reaction as an attractive way for the preparation of nicotine analogs (microreview). Chem Heterocycl Comp 59, 109–111 (2023). https://doi.org/10.1007/s10593-023-03171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-023-03171-5

Navigation