Skip to main content

Advertisement

Log in

Genetic diversity of Horvath’s Rock Lizard meets current environmental restrictions

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Horvath’s rock lizard Iberolacerta horvathi (Méhely, 1904) is an understudied lacertid species, which is geographically isolated from its congeners and currently classified as Near Threatened under IUCN red listing criteria. Due to its limited distribution and narrow environmental preferences, we expect that the species had been affected by past climatic oscillations. By combining all available data on species occurrences and our own records, we produced an updated distribution map. We used ecological niche models to identify the current environmental factors underlying the species range and developed a habitat suitability map. We sequenced one mitochondrial and one nuclear marker to characterize the distribution of the genetic variability and infer the historical demography of the species. The habitat suitability map identified areas where targeted field searches should be prioritized, as well as unsuitable habitats coinciding with likely barriers to gene flow. We found considerable genetic variability suggesting that the species probably survived the Pleistocene glaciations in at least two main refugia, one in the South and the other in the central/northern portion of its distribution. While southern populations show a moderate demographic decrease starting at the onset of the Eemian interglacial, the northern populations underwent an expansion during Late Pleistocene. We provide a revised species distribution and a first characterization of its genetic variability across its distribution to guide conservation priorities for this endemic and spatially restricted species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All molecular data are available on public database GenBank, with accession numbers: MN096384–MN096546.

References

  • Abellán P, Svenning J-C (2014) Climatic stability and biodiversity. Biol J Linn Soc Lond 113:13–28. https://doi.org/10.1111/bij.12309

    Article  Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37(7):1378–1393

    Article  Google Scholar 

  • Arnold EN (1987) Resource partition among lacertid lizards in southern Europe. J Zool 1:739–782

    Article  Google Scholar 

  • Arnold EN, Ovenden D (2004) A field guide to the reptiles and amphibians of Britain and Europe. Collins, London

    Google Scholar 

  • Arnold EN, Arribas O, Carranza S (2007) Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa 1430:86

    Article  Google Scholar 

  • Arribas OJ (1999) Phylogeny and relationships of the mountain lizards of Europe and Near East (Archaeolacerta Mertens, 1921, sensu lato) and their relationships among the Eurasian lacertid radiation. Russ J Herpetol 6:1–22

    Google Scholar 

  • Arribas O, Carranza S (2004) Morphological and genetic evidence of the full species status of Iberolacerta cyreni martinezricai (Arribas, 1996). Zootaxa 634:1–24

    Article  Google Scholar 

  • Avise J (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruford MW, Hanotte O, Brookfield JFY, Burke T (1992) Multi and single locus DNA fingerprinting. In: Hoelzel AR (ed) Molecular analysis of populations: a practical approach. IRL Press, Oxford, pp 225–269

    Google Scholar 

  • Buades JM, Rodríguez V, Terrasa B, Pérez-Mellado V, Brown RP et al (2013) Variability of the mc1r gene in melanic and non-melanic Podarcis lilfordi and Podarcis pityusensis from the Balearic Archipelago. PLOS ONE 8(1):e53088. https://doi.org/10.1371/journal.pone.0053088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabela A, Grillitsch H, Tiedemann F (2004) Lacerta horvathi (MÉHELY, 1904) in the Tyrol south of the Central Alps. Herpetozoa 16:175–176

    Google Scholar 

  • Cabela A, Grillitsch H, Tiedemann F (2007) Habitatpraferenzen von Podarcis muralis (Laurenti, 1768) und Iberolacerta horvathi (Mehely, 1904) bei gemeinsamem Vorkommen. Herpetozoa 19:149–160

    Google Scholar 

  • Canestrelli D, Cimmaruta R, Nascetti G (2007) Phylogeography and historical demography of the Italian treefrog Hyla intermedia reveals multiple refugia, population expansions and secondary contacts within peninsular Italy. Mol Ecol 16:4808–4821

    Article  CAS  PubMed  Google Scholar 

  • Canestrelli D, Cimmaruta R, Nascetti G (2008) Population genetic structure and diversity of the Apennine endemic stream frog, Rana italica: insights on the Pleistocene evolutionary history of the Italian peninsular biota. Mol Ecol 17:3856–3872

    Article  PubMed  Google Scholar 

  • Capula M, Luiselli L (1990) Notes on the occurrence and distribution of Lacerta horvathi MÉHELY, 1904 in Federal Republic of Germany. Herpetol J 1:535–536

    Google Scholar 

  • Carranza S, Arnold EN, Amat F (2004) DNA phylogeny of Lacerta (Iberolacerta) and other lacertine lizards (Reptilia: Lacertidae): did competition cause long-term mountain restriction? Syst Biodivers 2:57–77

    Article  Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary process in conservation biology. Tree 15:290–295

    CAS  PubMed  Google Scholar 

  • Crochet PA, Chaline O, Surget-Groba Y, Debain C, Cheylan M (2004) Speciation in mountains: phylogeography and phylogeny of the rock lizards genus Iberolacerta (Reptilia: Lacertidae). Mol Phylogenet Evol 30:860–866

    Article  CAS  PubMed  Google Scholar 

  • Crottini A, Andreone F, Kosuch J, Borkin LJ, Litvinchuk SN, Eggert C, Veith M (2007) Fossorial but widespread: the phylogeography of the common spadefoot toad (Pelobates fuscus), and the role of the Po Valley as a major source of genetic variability. Mol Ecol 16:2734–2754

    Article  PubMed  Google Scholar 

  • De Luca N (1989) Taxonomic and biogeographic characteristics of Horvath’s rock lizard (Lacerta horvathi Mehely, 1904, Lacertidae, Reptilia) in Yugoslavia. Scopolia 18:1–48

    Google Scholar 

  • De Luca N (1992) Notes on biology and ecology of the Horvath’s rock lizard (Lacerta horvathi Méhely, 1904, Reptilia: Lacertidae). In: Korsós Z, Kiss I (eds) Proceeding of the sixth ordinary general meeting of the Societas Europaea Herpetologica, Budapest 1991. Hungarian Natural History Museum, Budapest, pp 129–135

    Google Scholar 

  • De Marchi G, Bombieri G, Boz B, Lenardi F, Richard J (2020) Has the West been won? A field survey and a species distribution model of Iberolacerta horvathi in the Alps. Acta Herpetol. https://doi.org/10.13128/a_h-8448

    Article  Google Scholar 

  • dos Santos AM, Cabezas MP, Tavares AI, Xavier R, Branco M (2015) tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics 32:627–628

    Article  CAS  Google Scholar 

  • Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Bio Evol 29:1969–1973

    Article  CAS  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Flohn H, Fantechi R (1984) The climate of Europe: past, present and future. Reidel, Dordrecht, pp 1–356

    Google Scholar 

  • Freitas S, Rocha S, Campos J, Ahmadzadeh F, Corti C, Sillero N, Ilgaz Ç, Kumlutaş Y, Arakelyan M, Harris DJ, Carretero MA (2016) Parthenogenesis through the ice ages: A biogeographic analysis of Caucasian rock lizards (genus Darevskia). Mol Phylogenet Evol 102:117–127. https://doi.org/10.1016/j.ympev.2016.05.035

    Article  PubMed  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2):915–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Porta J, Irisarri I, Kirchner M et al (2019) Environmental temperatures shape thermal physiology as well as diversification and genome-wide substitution rates in lizards. Nat Commun 10:4077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gasc JP, Cabela A, Crnobrnja-Isailovic J, Dolmen D, Grossenbacher K, Haffner P, Lescure J, Martens H, Martinez Rica JP, Maurin H (1997) Atlas of amphibians and reptiles in Europe. Societas Europaea Herpetologica and Museum National d-Historie Naturelle (IEGB/SPN), Paris

    Google Scholar 

  • Gómez A, Lunt DH (2007) Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S, Ferrand N (eds) Phylogeography of southern European refugia. Springer, Dordrecht, pp 155–188

    Chapter  Google Scholar 

  • Grillitsch H, Cabela A, Tiedemann F (2001) Lacerta horvathi Méhely, 1904. Kroatische Gebigseidechse. In: Cabela A, Grillitsch H, Tiedemann F (eds) Atlas zur Verbreitung und Ökologie der Amphibien und Reptilien in Österreich. Umwelfbundesamt-Naturhistorisches Museum Wien, Wien, pp 481–488

    Google Scholar 

  • Guillera-Arroita G, Lahoz-Monfort JJ, Elith J (2014) Maxent is not a presence-absence method: a comment on Thibaud et al. Methods Ecol Evol 5:1192–1197

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid Sympos Ser 41:95–98

    CAS  Google Scholar 

  • Harding RM, Healy E, Ray AJ, Ellis NS, Flanagan N, Todd C, Dixon C, Sajantila A, Jackson IJ, Birch-Machin MA, Rees JL (2000) Evidence for variable selective pressures at MC1R. Am J Hum Genet 66(4):1351–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harpending HC, Sherry ST, Rogers AR, Stoneking M (1993) The genetic structure of ancient human populations. Curr Anthr 34(4):483–496

    Article  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405:907

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (2004) The structure of biodiversity–insights from molecular phylogeography. Front Zool 1:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hewitt GM (2011) Mediterranean peninsulas: the evolution of hotspots. In: Zachos FE, Habel JC (eds) Biodiversity hotspots. Springer, Heidelberg, pp 123–147

    Chapter  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Jelić D, Kuljerić M, Koren T, Treer D, Šalamon D, Lončar M, Podnar Lešić M, Janev Hutinec B, Bogdanović T, Mekinić S, Jelić K (2015) Red book of amphibians and reptiles of Croatia. Ministry of Enviroument and Nature Protection, State Institution for Nature Protection, Zagreb

    Google Scholar 

  • Lanfear R, Frandsen P, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773

    CAS  PubMed  Google Scholar 

  • Lapini L, Dall’Asta A, Luiselli L, Nardi P (2004) Lacerta horvathi in Italy: a review with new data on distribution, spacing strategy and territoriality (Reptilia, Lacertidae). B Zool 71:145–151

    Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm.” Human Biol 76:173–190

    Article  PubMed  Google Scholar 

  • Maura M, Salvi D, Bologna MA, Nascetti G, Canestrelli D (2014) Northern richness and cryptic refugia: phylogeography of the Italian smooth newt Lissotriton vulgaris meridionalis. Biol J Linn Soc 113:590–603

    Article  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), New Orleans, LA, pp. 1–8.

  • Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Osojnik N, Žagar A, Carretero MA, Garcia-Munoz E, Vrezec A (2013) Ecophysiological dissimilarities of two sympatric lizards. Herpetologica 69:445–454

    Article  Google Scholar 

  • Pfenninger M, Posada D (2002) Phylogeographic history of the land snail Candidula unifasciata (Poiret 1801) (Helicellinae, Stylommatophora): fragmentation, corridor migration and secondary contact. Evolution 56:1776–1788

    PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography 40:887–893

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the twenty-first international conference on Machine learning. ACM, New York, p. 83

  • Pinho C, Harris DJ, Ferrand N (2007) Contrasting patterns of population subdivision and historical demography in three western Mediterranean lizard species inferred from mitochondrial DNA variation. Mol Ecol 16:1191–1205

    Article  CAS  PubMed  Google Scholar 

  • Pinho C, Kaliontzopoulou A, Harris DJ, Ferrand N (2011) Recent evolutionary history of the Iberian endemic lizards Podarcis bocagei (Seoane, 1884) and Podarcis carbonelli Pérez-Mellado, 1981 (Squamata: Lacertidae) revealed by allozyme and microsatellite markers. Zool J Linn Soc 162:184–200

    Article  Google Scholar 

  • Pinho C, Rocha S, Carvalho BM et al (2010) New primers for the amplification and sequencing of nuclear loci in a taxonomically wide set of reptiles and amphibians. Con Gen Res 2:181–185

    Article  Google Scholar 

  • Podnar M, Bruvo Mađarić B, Mayer W (2014) Non-concordant phylogeographical patterns of three widely codistributed endemic Western Balkans lacertid lizards (Reptilia, Lacertidae) shaped by specific habitat requirements and different responses to Pleistocene climatic oscillations. J Zool Sys Evol Res 52:119–129

    Article  Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific phylogenetics: trees grafting into network. Trends Ecol Evol 16:37–45

    Article  CAS  PubMed  Google Scholar 

  • Pozzi A (1966) Geonemia e catalogo ragionato degli Anfibi e dei Rettili della Jugoslavia. Natura 57:5–55

    Google Scholar 

  • Raes N, ter Steege H (2007) A null-model for significance testing of presence-only species distribution models. Ecography 30:727–736

    Article  Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v. 1.6. http://beast.bio.ed.ac.uk/tracer

  • Rassati G (2010) Contributo alla conoscenza della distribuzione della Lucertola di Horvath Iberolacerta horvathi e della Lucertola dei muri Podarcis muralis in Friuli Venezia Giulia e in Veneto. Atti di Museo Civico di Storia Naturale Trieste 54:133–146

    Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Sys Biol 61:539–542

    Article  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  • Rull V (2009) Microrefugia. J Biogeogr 36:481–484

    Article  Google Scholar 

  • Salvi D, Harris DJ, Kaliontzopoulou A, Carretero MA, Pinho C (2013) Persistence across Pleistocene Ice Ages in Mediterranean and extra-Mediterranean refugia: phylogeographic insights from the common wall lizard. BMC Evol Biol 13:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvi D, Schembri PJ, Sciberras A, Harris DJ (2014) Evolutionary history of the Maltese wall lizard Podarcis filfolensis: insights on the ‘expansion–contraction’ model of the Pleistocene biogeography. Mol Ecol 23:1167–1187

    Article  PubMed  Google Scholar 

  • Schmidtler H, Schmidtler J (1996) Zur Reptilienfauna der Nördlichen Kalkalpen zwischen Isar und Inn (Bayern/Tirol). Mitt. Landesverband Amphibien- und Reptilien-Schutz (LARS) in Bayern. München 15:1–36

    Google Scholar 

  • Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152(3):1079–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillero N (2011) What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol Model 222:1343–1346

    Article  Google Scholar 

  • Sillero N, Bonardi A, Corti C, Creemers R, Crochet P, Ficetola GF, Kuzmin S, Lymberakis P, Pous PD, Sindaco R, Speybroeck J, Toxopeus B, Vieites DR, Vences M (2014) Updated distribution and biogeography of amphibians and reptiles of Europe. Amphibia-Reptilia 35:1–31

    Article  Google Scholar 

  • Speybroeck J, Beukema W, Bok B, Van Der Voort J (2016) Field guide to the amphibians and reptiles of Britain and Europe. Bloomsbury Publishing, London

    Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Gen 68:978–989

    Article  CAS  Google Scholar 

  • Stewart JR (2009) The evolutionary consequence of the individualistic response to climate change. J Evol Biol 22:2363–2375

    Article  CAS  PubMed  Google Scholar 

  • Sztencel-Jabłonka A, Mazgajski TD, Bury S, Najbar B, Rybacki M, Bogdanowicz W, Mazgajska J (2015) Smooth Snake Phylogeography and Population Structure. Biol J Linn Soc Lond 115:195–210

    Article  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toews DP, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 21(16):3907–3930

    Article  CAS  PubMed  Google Scholar 

  • Uetz P, Freed P, Hošek J (2019) The reptile database. http://www.reptile-database.org. Accessed 1 Feb 2019.

  • VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220:589–594

    Article  Google Scholar 

  • Vogrin M, Böhme W, Crochet P-A, Nettmann HK, Sindaco R, Romano A (2009) Iberolacerta horvathi (errata version published in 2016). IUCN Red List Threat Species. https://doi.org/10.2305/IUCN.UK.2009.RLTS.T61515A12498717.en

    Article  Google Scholar 

  • Zeisset I, Beebee TJC (2008) Amphibian phylogeography: a model for understanding historical aspects of species distributions. Heredity 101:109–119

    Article  CAS  PubMed  Google Scholar 

  • Žagar A (2008) The lowest altitudinal record of Horvath’s Rock Lizard (Iberolacerta horvathi) in Slovenia. Nat Slo 10:59–61

    Google Scholar 

  • Žagar A, Kos I, Vrezec A (2013) Habitat segregation patterns of reptiles in Northern Dinaric Mountains (Slovenia). Amphibia-Reptilia 34:263–268

    Article  Google Scholar 

  • Žagar A, Bitenc K, Vrezec A, Carretero MA (2015a) Predators as mediators: differential antipredator behavior in competitive lizard species in a multi-predator environment. Zool Anzeiger 259:31–40

    Article  Google Scholar 

  • Žagar A, Simčič T, Carretero MA, Vrezec A (2015b) The role of metabolism in understanding the altitudinal segregation pattern of two potentially interacting lizards. Comp Biochem Physiol A 179:1–6

    Article  CAS  Google Scholar 

  • Žagar A, Carretero MA, Osojnik N, Sillero N, Vrezec A (2015c) A place in the sun: interspecific interference affects thermoregulation in coexisting lizards. Behav Ecol Sociobiol 69:1127–1137

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all friends and colleagues who helped us in the field during the collection campaigns and to the curators and collection managers that provided access to the collection material under their care: Nicola Bressi and Andrea Dall’Asta from Museo Civico di Storia Naturale di Trieste (Italy), Roberto Sindaco from Museo civico di storia naturale Carmagnola (Italy), Irena Grbac from the Croatian Natural History Museum (Zagreb, Croatia), Boris Kryštufek, Al Vrezec and Urška Kačar from the Natural History Museum Ljubljana (Slovenia), Heinz Grillitsch, Silke Schweiger and Georg Gassner from Naturhistorisches Museum Wien (Austria), Wolfgang Böhme from Zoologische Forschungsmuseum Alexander Koenig, Bonn (Germany). We are very grateful to Gianluca Rassati, Dušan Jelić and Ali Šalamun for sharing distribution data, and to Tiziano Florenza.

Funding

Anamarija Žagar received support from the SYNTHESYS Project http://www.synthesys.info/, funded by the European Community Research Infrastructure Action under the FP7 "Capacities" Program (AT-TAF-3324). Portuguese National Funds through FCT (Fundação para a Ciência e a Tecnologia) supported the IF/00209/2014 and 2020.00823.CEECIND contracts to Angelica Crottini, the postdoctoral fellowship to Michael J. Jowers (SFRH/BPD/109148/2015), the doctoral fellowships of Walter Cocca (SFRH/BD/102495/2014) and Anamarija Žagar (SFRH/BD/81324/2011) and a Principal Researcher contract to Neftalí Sillero (CEECIND/02213/2017). During data collection and article preparation Anamarija Žagar received financial support from the national program “Women in science” from L’Oreal and Slovenian national commission for UNESCO and the Slovenian Research Agency (research core funding No. P1-0255). Miha Krofel was supported by the Slovenian Research Agency (grant P4-0059). This work was supported by FCT with the IF/00209/2014/CP1256/CT0011 Exploratory Research Project.

Author information

Authors and Affiliations

Authors

Contributions

WC and AŽ have contributed equally to the development of this study and the preparation of the manuscript. AŽ, MK, ML, MP, NT, MAC and AC contributed to distributional data and tissue collection. WC, AŽ, NS, MJJ and AC contributed to the data generation and data analyses. AŽ, MAC and AC conceived and designed the study. WC, AŽ and AC wrote the manuscript and all authors contributed to the writing and revision.

Corresponding author

Correspondence to Walter Cocca.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest and we confirm we all abide to the ethical guidelines of the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1: File containing all Online Resources (from 1 to 9) (DOCX 1046 kb)

Supplementary file2: Picture high resolution of Online Resource 2 (PNG 94 kb)

Supplementary file3: Picture high resolution of Online Resource 3 (PDF 2398 kb)

Supplementary file4: Input and output files for Barrier analysis, Online Resources 7 (TXT 4 kb)

Supplementary file5: Input and output files for Barrier analysis, Online Resources 7 (TXT 1 kb)

Supplementary file6: Input and output files for Barrier analysis, Online Resources 7 (TXT 5 kb)

Supplementary file7: Input and output files for Barrier analysis, Online Resources 7 (DVB 13 kb)

Supplementary file8: Input and output files for Barrier analysis, Online Resources 7 (DVT 9 kb)

Supplementary file9: Picture high resolution of Online Resource 8 (TIF 66470 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cocca, W., Žagar, A., Sillero, N. et al. Genetic diversity of Horvath’s Rock Lizard meets current environmental restrictions. Conserv Genet 22, 483–498 (2021). https://doi.org/10.1007/s10592-021-01351-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-021-01351-4

Keywords

Navigation