Skip to main content
Log in

Detecting genomic variation underlying phenotypic characteristics of reintroduced Coho salmon (Oncorhynchus kisutch)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

For species that have been extirpated from parts of their range, conservation managers often reintroduce individuals to these areas in hopes of restoring populations to pre-decline conditions. Coho salmon (Oncorhynchus kisutch) have been extirpated since the early 1900s in the interior reaches of the Columbia River watershed. Starting in the late 1990s, the Columbia River Treaty tribes were successful in starting a re-introduction program that has established an upper Columbia River Coho salmon stock. Fish are preferentially selected for broodstock to incorporate naturally occurring phenotypic characteristics to facilitate local adaptation. On the Wenatchee River in Washington, broodstock are preferentially selected at a lower and upper river dam, however, only ~ 32% of fish successfully ascend a 15 km high-gradient reach to the upper river dam. Fish that successfully ascend the reach generally arrive early in the season and have a better overall body condition. In other salmonids, phenotypic traits such as return timing has been shown to be under genetic control. To determine if there are genomic regions that underly the phenotypic traits found to impact migration success up a high-gradient reach, low-coverage whole genome re-sequencing (lcWGR) was performed on adult fish returning to the system. Genome-wide association tests revealed three genomic regions that are associated with fish return location. Results of the lcWGR suggest that candidate markers can be incorporated as a genetic screening tool during broodstock selection to preferentially breed fish that have the phenotypic characteristics that confer greater potential for steeper and longer migration distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrektsen S, Hagve TA, Lie Ø (1994) The effect of dietary vitamin B6 on tissue fat contents and lipid composition in livers and gills of Atlantic salmon (Salmo salar). Comp Biochem Physiol Physiol 109:403–411

    Google Scholar 

  • Anderson JH, Pess GR, Carmichael RW, Ford MJ, Cooney TD, Baldwin CM, McClure MM (2014) Planning Pacific Salmon and Steelhead reintroductions aimed a long-term viability and recovery. N Am J Fish Manag 34:72–93

    Google Scholar 

  • Araneda C, Lam N, Iturra P (2019) Development and application of sex-linked markers in Salmonidae. In: Wang HP, Piferrer F, Chen SL, Shen ZG (eds) Sex control in aquaculture, 1st edn. Wiley-Blackwell, New York, pp 281–296

    Google Scholar 

  • Ayllon F, Kjærner-Semb E, Furmanek T, Wennevik V, Solberg MF, Dahle G, Taranger GL, Glover KA, Almén MS, Rubin CJ, Edvardsen RB, Wargelius A (2015) The vgll3 locus controls age at maturity in wild and domesticated Atlantic salmon (Salmo salar L.) males. PLoS Genet 11:e1005628

    PubMed  PubMed Central  Google Scholar 

  • Benestan L, Moore JS, Sutherland BJG, Le Luyer J, Maaroufi H, Rougeux C, Normandeau E, Rycroft N, Atema J, Harris LN, Tallman RF, Greenwood SJ, Clark FK, Bernatchez L (2017) Sex matters in massive parallel sequencing: evidence for biases in genetic parameter estimation and investigation of sex determination systems. Mol Ecol 26:6767–6783

    CAS  PubMed  Google Scholar 

  • Bennett TR, Roni P, Denton K, McHenry M, Moses R (2015) Nomads no more: early juvenile coho salmon migrants contribute to the adult return. Ecol Freshw Fish 24:264–275

    Google Scholar 

  • Bosch WJ, Newsome TH, Dunnigan JL, Hubble JD, Neeley D, Lind DT, Fast DE, Lamebull LL, Blodgett JW (2007) Evaluating the feasibility of reestablishing a Coho salmon population in the Yakima River, Washington. N Am J Fish Manag 27:198–214

    Google Scholar 

  • Campbell NR, Harmon SA, Narum SR (2015) Genotyping-in-thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol Ecol Resources 15:855–867

    CAS  Google Scholar 

  • Campbell NR, Kamphaus C, Murdoch K, Narum SR (2017) Patterns of genomic variation in Coho salmon following reintroduction to the interior Columbia River. Ecol Evol 7:10350–10360

    PubMed  PubMed Central  Google Scholar 

  • Cavileer TD, Hunter SS, Olsen J, Wenburg J, Nagler JJ (2015) A sex-determining gene (sdY) assay shows discordance between phenotypic and genotypic sex in wild populations of Chinook salmon. Trans Am Fish Soc 144:423–430

    CAS  Google Scholar 

  • Christensen KA, Leong JS, Sakhrani D, Biagi CA, Minkley DR, Withler RE, Rondeau EB, Koop BF, Devlin RH (2018) Chinook salmon (Oncorhynchus tshawytscha). PLoS ONE 13(4):e0195461

    PubMed  PubMed Central  Google Scholar 

  • Cui X, De Vivo I, Slany R, Miyamoto A, Firestein R, Cleary ML (1998) Association of SET domain and myotubularin-related proteins modulates growth control. Nat Genet 18:331–337

    CAS  PubMed  Google Scholar 

  • Davidson WS, Huang T-K, Fujiki K, Von Schalburg KR, Koop BF (2009) The sex determining loci and sex chromosomes in the family Salmonidae. Sexual Development 3:78–87

    CAS  PubMed  Google Scholar 

  • Devlin RH, Biagi CA, Smailus DE (2001) Genetic mapping of Y-chromosomal DNA markers in Pacific salmon. Genetica 111:43–58

    CAS  PubMed  Google Scholar 

  • Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6:227

    PubMed  PubMed Central  Google Scholar 

  • Du SJ, Devlin RH, Hew CL (1993) Genomic structure of growth hormone genes in Chinook salmon (Oncorhynchus tshawytscha): presence of two functional genes, GH-I and GH-II, and a male-specific pseudogene, GH-ψ. DNA Cell Biol 12:739–751

    CAS  PubMed  Google Scholar 

  • Fariello MI, Boitard S, Mercier S, Robelin D, Faraut T, Arnould C, Recoquillay J, Bouchez O, Salin G, Dehais P, Gourichon D, Leroux S, Pitel F, Leterrier C, SanCristobal M (2017) Accounting for linkage disequilibrium in genome scans for selection without individual genotypes: the local score approach. Mol Ecol 26:3700–3714

    CAS  PubMed  Google Scholar 

  • Fonda ML (1992) Purification and characterization of vitamin B6-phosphate phosphatase from human erythrocytes. J Biol Chem 267:15978–15983

    CAS  PubMed  Google Scholar 

  • Galbreath PF, Bisbee MA Jr, Dompier DW, Kamphaus CM, Newsome TH (2014) Extirpation and tribal reintroduction of Coho salmon to the interior Columbia River basin. Fisheries 39:77–87

    Google Scholar 

  • Genovese G, Handsaker RE, Li H, Kenny EE, McCarroll SA (2013) Mapping the human reference genome’s missing sequence by three-way admixture in Latino genomes. Am J Hum Genet 93:411–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson RG, Waples RS, Myers JM, Weitkamp LA, Bryant GJ, Johnson OW, Hand JJ (2007) Pacific salmon extinctions: quantifying lost and remaining diversity. Conservat Biol 21:1009–1020

    Google Scholar 

  • Gutierrez AP, Yáñez JM, Fukui S, Swift B, Davidson WS (2015) Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic salmon (Salmo salar). PLoS ONE 10:e0119730

    PubMed  PubMed Central  Google Scholar 

  • Hansen A-C, Waagbø R, Hemre G-I (2015) New B vitamin recommendations in fish when fed plant-based diets. Aquaculture Nutr 21:507–527

    CAS  Google Scholar 

  • Hecht BC, Matala AP, Hess JE, Narum SR (2015) Environmental adaptation in Chinook salmon (Oncorhynchus tshawytscha) throughout their North American range. Mol Ecol 24:5573–5595

    PubMed  Google Scholar 

  • Herz H-M, Garruss A, Shilatifard A (2013) SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 38:621–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hess JE, Narum SR (2011) Single-nucleotide polymorphism (SNP) loci correlated with run timing in adult Chinook salmon from the Columbia River basin. Trans Am Fish Soc 140:855–864

    CAS  Google Scholar 

  • Hess JE, Ackerman MW, Fryer JK, Hasselman DJ, Steele CA, Stephenson JJ, Whiteaker JM, Narum SR (2016a) Differential adult migration-timing and stock-specific abundance of steelhead in mixed stock assemblages. ICES J Mar Sci 73:2006–2615

    Google Scholar 

  • Hess JE, Zendt JS, Matala AR, Narum SR (2016b) Genetic basis of adult migration timing in anadromous steelhead discovered through multivariate association testing. Proc R Soc B 283:20153064

  • Hu J, Barrett RDH (2017) Epigenetics in natural animal populations. J Evol Biol 30:1612–1632

  • Izquierdo MS, Fernández-Palacios H, Tacon AGJ (2001) Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 197:25–42

    Google Scholar 

  • Jang YM, Kim DW, Kang T-C, Won MH, Baek N-I, Moon BJ, Choi SY, Kwon O-S (2003) Human pyridoxal phosphatase: molecular cloning, functional expression, and tissue distribution. J Biol Chem 278:50040–50046

    CAS  PubMed  Google Scholar 

  • Johnston SE, Orell P, Pritchard VL, Kent MP, Lien S, Niemelä E, Erkinaro J, Primmer CR (2014) Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a wild population of Atlantic salmon (Salmo salar). Mol Ecol 23:3452–3468

    CAS  PubMed  Google Scholar 

  • Karlsson EK, Baranowska I, Wade CM, Hillbertz NHCS, Zody MC, Anderson N, Biagi TM, Patterson N, Pielberg GR, Kulbokas EJ III, Comstock KE, Keller ET, Mesirov JP, von Euler H, Kämpe O, Hedhammar Å, Lander ES, Andersson G, Andersson L, Lindblad-Toh K (2007) Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet 39:1321–1328

    CAS  PubMed  Google Scholar 

  • Keefer ML, Blubaugh TJ, Clabough TS, Jepson MA, Naughton GP, Caudill CC (2018) Coho salmon colonization of Oregon’s upper Willamette River basin. Trans Am Fish Soc 147:1153–1166

    Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    CAS  PubMed  Google Scholar 

  • Kozfkay CC, Peterson M, Sandford BP, Johnson EL, Kline P (2019) The productivity and viability of Snake River Sockeye salmon hatchery adults released into Redfish Lake, Idaho. Trans Am Fish Soc 148:308–323

    Google Scholar 

  • Liermann M, Pess G, McHenry M, McMillan J, Elofson M, Bennett T, Moses R (2017) Relocation and recolonization of Coho salmon in two tributaries to the Elwha River: implications for management and monitoring. Trans Am Fish Soc 146:955–966

    Google Scholar 

  • Matala AP, Narum SR, Saluskin BP, Johnston MV, Newell JE, Fast DE, Galbreath PF (2019) Early observations from monitoring a reintroduction program: return of Sockeye salmon to a nursery lake of historical importance. Trans Am Fish Soc 148:271–288

    Google Scholar 

  • McClelland EK, Naish KA (2008) A genetic linkage map for Coho salmon (Oncorhynchus kisutch). Anim Genet 39:169–179

    CAS  PubMed  Google Scholar 

  • Micheletti SJ, Narum SR (2018) Utility of pooled sequencing for association mapping in non-model organisms. Mol Ecol Resources 18:825–837

    CAS  Google Scholar 

  • Micheletti SJ, Hess JE, Zendt JS, Narum SR (2018) Selection at a genomic region of major effect is responsible for evolution of complex life histories in anadromous steelhead. BMC Evol Biol 18:140

    PubMed  PubMed Central  Google Scholar 

  • Murdoch K, Jeffries T (2015) Factors affecting migratory success within the Wenatchee River in a population of reintroduced Coho salmon. Yakama Nation Fisheries Resource Management. https://dashboard.yakamafish-star.net/sites/default/files/2020-08/Murdoch_and_Jeffries_2015.pdf

  • Muttray AF, Sakhrani D, Smith JL, Nakayama I, Davidson WS, Park L, Devlin RH (2017) Deletion and copy number variation of Y-chromosomal regions in Coho salmon, Chum salmon, and Pink salmon populations. Trans Am Fish Soc 146:240–251

    CAS  Google Scholar 

  • Narum SR, Stephenson JJ, Campbell MR (2007a) Genetic variation and structure of Chinook salmon life history types in the Snake River. Trans Am Fish Soc 136:1252–1262

    CAS  Google Scholar 

  • Narum SR, Arnsberg WD, Talbot AJ, Powell MS (2007b) Reproductive isolation following reintroduction of Chinook salmon with alternative life histories. Conservat Genet 8:1123–1132

    Google Scholar 

  • Narum SR, Genova AD, Micheletti SJ, Maass A (2018) Genomic variation underlying complex life-history traits revealed by genome sequencing in Chinook salmon. Proc Biol Sci 285:20180935

    PubMed  PubMed Central  Google Scholar 

  • Nehlsen W, Williams JE, Lichatowich JA (1991) Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho, and Washington. Fisheries 16:4–21

    Google Scholar 

  • Paradis E, Schliep K (2018) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528

    Google Scholar 

  • Pearse DE, Barson NJ, Nome T, Gao G, Campbell MA, Abadía-Cardoso A, Anderson EC, Rundio DE, Williams TH, Naish KA, Moen T, Liu S, Kent M, Moser M, Minkley DR, Rondeau EB, Brieuc MSO, Sandve SR, Miller MR, Cedillo L, Baruch K, Hernandez AG, Ben-Zvi G, Shem-Tov D, Barad O, Kuzishchin K, Garza JC, Lindley ST, Koop BF, Thorgaard GH, Palti Y, Lien S (2019) Sex-dependent dominance maintains migration supergene in rainbow trout. Nat Ecol Evol 3:1731–1742

    PubMed  Google Scholar 

  • Phillips RB, Park LK, Naish KA (2013) Assignment of Chinook salmon (Oncorhynchus tshawytscha) linkage groups to specific chromosomes reveals a karyotype with multiple rearrangements of the chromosome arms of Rainbow trout (Oncorhynchus mykiss). G3: Gens, Genomes, Genetics 3:2289–2295

  • Pickrell JK, Gaffney DJ, Gilad Y, Pritchard JK (2011) False positive peaks in ChIP-seq and other sequencing-based functional assays caused by unannotated high copy number regions. Bioinformatics 27:2144–2146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prince DJ, O’Rourke SM, Thompson TQ, Ali OA, Lyman HS, Saglam IK, Hotaling TJ, Spidle AP, Miller MR (2017) The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci Adv 3:e1603198

    PubMed  PubMed Central  Google Scholar 

  • Robert A, Colas B, Guigon I, Kerbiriou C, Mihoub JB, Saint-Jalme M, Sarrazin F (2015) Defining reintroduction success using IUCN criteria for threatened species: a demographic assessment. Anim Conservat 18:397–406

    Google Scholar 

  • Sard NM, O’Malley KG, Jacobson DP, Hogansen MJ, Johnson MA, Banks MA (2015) Factors influencing spawner success in a spring Chinook salmon (Oncorhynchus tshawytscha) reintroduction program. Can J Fish Aquat Sci 72:1390–1397

    Google Scholar 

  • Schaller HA, Petrosky CE, Langness OP (1999) Contrasting patterns of productivity and survival rates for stream-type Chinook salmon (Oncorhynchus tshawytscha) populations of the Snake and Columbia Rivers. Can J Fish Aquat Sci 56:1031–1045

    Google Scholar 

  • Schindler DE, Hilborn R, Chasco B, Boatright CP, Quinn TP, Rogers LA, Webster MS (2010) Population diversity and the portfolio effect in an exploited species. Nat Lett 465:609–612

    CAS  Google Scholar 

  • Seddon PJ, Armstrong DP, Maloney RF (2007) Developing the science of reintroduction biology. Conservat Biol 21:303–312

    Google Scholar 

  • Smith CT, Baumsteiger J, Ardren WR, Hawkins DK, Dettlaff Y, Van Doornik DM (2014) Eliminating variation in age at spawning leads to genetic divergence within a single salmon population. J Fish Wildlife Manage 6:4–18

    Google Scholar 

  • Sweet D, Lorente M, Valenzuela A, Lorente J, Alvarez JC (1996) Increasing DNA extraction yield from saliva stains with a modified Chelex method. Forensic Sci Int 83:167–177

    CAS  PubMed  Google Scholar 

  • Thompson TQ, Bellinger MR, O’Rourke SM, Prince DJ, Stevenson AE, Rodrigues AT, Sloat MR, Speller CF, Yang DY, Butler VL, Banks MA, Miller MR (2019) Anthropogenic habitat alteration leads to rapid loss of adaptive variation and restoration potential in wild salmon populations. Proc Natl Acad Sci 116:177–186

    CAS  PubMed  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veale AJ, Russello MA (2017) Genomic changes associated with reproductive and migratory ecotypes in Sockeye salmon (Oncorhynchus nerka). Genome Biol Evol 9:2921–2939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waples RS, Teel DJ, Myers JM, Marshall AR (2004) Life-history divergence in Chinook salmon: historic contingency and parallel evolution. Evolution 58:386–403

    PubMed  Google Scholar 

  • Yakama Nation Fisheries (2012) Upper Wenatchee River stream corridor assessment and habitat restoration strategy. Prepared by Inter-Fluve Inc for Yakama Nation Fisheries

  • Yakama Nation Fisheries Resource Management (2010) Mid-Columbia Coho restoration master plan. Prepared for Northwest Power and Conservation Council

  • Yano A, Nicol B, Jouanno E, Quillet E, Fostier A, Guyomard R, Guiguen Y (2013) The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evol Appl 6:486–496

    CAS  PubMed  Google Scholar 

  • Zhao Z, Fu Y-X, Hewett-Emmett D, Boerwinkle E (2003) Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution. Gene 312:207–213

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by a grant from Bonneville Power Administration (Funding project 1996-040-00), Chelan County Public Utility District, and Grant County Public Utility District. We would like to thank Bryan Ishida, Tim Jeffries, Michael Whitefoot, and Greg Wolfe for assistance in the field, Stephanie Harmon, Vanessa Morman, and Rebecca Sanders for the lab work, and David Graves for production of the map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekah L. Horn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horn, R.L., Kamphaus, C., Murdoch, K. et al. Detecting genomic variation underlying phenotypic characteristics of reintroduced Coho salmon (Oncorhynchus kisutch). Conserv Genet 21, 1011–1021 (2020). https://doi.org/10.1007/s10592-020-01307-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-020-01307-0

Keywords

Navigation