Skip to main content

Advertisement

Log in

Molecular and morphological evidence for hybrid origin and matroclinal inheritance of an endangered wild rose, Rosa  × pseudobanksiae (Rosaceae) from China

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The distinction between hybrids and species of hybrid origin is significant for plant diversity conservation. Interspecific hybridization within the genus Rosa is a common phenomenon. Based on field observation, we hypothesized that one previously published species, Rosa pseudobanksiae (endangered category: CR) might be a hybrid. In this study, we utilized molecular approaches involving three nuclear markers and four plastid markers to examine the origin of R. pseudobanksiae. Our evidence shows that it is indeed a natural homoploid hybrid between R. banksiae var. normalis and R. multiflora var. cathayensis, and that gene flows bidirectionally. Our multivariate morphometric analyses provide strong evidence for a matrocliny in R.  × pseudobanksiae individuals. R.  × pseudobanksiae has diverse morphological variations among individuals andshares the overlapped distributions with its parental progenitors. This taxon has not developed into a stabilized and self-evolving lineage with the high sterility in seed sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Google Scholar 

  • Anderson E, Stebbins GL (1954) Hybridization as an evolutionary stimulus. Evolution 8:378–388

    Google Scholar 

  • Arnold ML (1992) Natural hybridization as an evolutionary process. Annu Rev Ecol Syst 23:237–261

    Google Scholar 

  • Arnold ML (1994) Natural hybridization and Louisiana Irises defining a major factor in plant evolution bioscience. Bioscience 44:141–147

    Google Scholar 

  • Arnold ML, Meyer A (2006) Natural hybridization in primates: One evolutionary mechanism. Zoology 109:261–276

    PubMed  Google Scholar 

  • Barrie FR (2006) Report of the general committee 9. Taxon 55:795–800

    Google Scholar 

  • Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae conserved ortholog set COS of markers. BMC Genom 10:562

    Google Scholar 

  • Chernomor O, von Haeseler A, Minh BQ (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol 65:997–1008

    PubMed  PubMed Central  Google Scholar 

  • Cole D (1956) A revision of the Rosa california complex. Am Midl Nat 55:211–224

    Google Scholar 

  • Coyne J (1992) Genetics and speciation. Nature 355:511–515

    CAS  PubMed  Google Scholar 

  • Deng HN, Gao XF, Li XH, Zhou HY (2015) Molecular evidence for hybridization origin of Rosa × sterilis (Rosaceae). J Plant Resour Environ 24:10–17

    Google Scholar 

  • Evans RC, Alice LA, Campbell CS, Kellogg EA, Dickinson TA (2000) The granule-bound starch synthase (GBSSI) gene in the Rosaceae: multiple loci and phylogenetic utility. Mol Phylogenet Evol 17:388–400

    CAS  PubMed  Google Scholar 

  • Fagerlind F (1944) Kompatibilität und incompatibilität in der gattung Rosa. Acta Horti Bergiani 13:247–372

    Google Scholar 

  • Farris JS, Albert VA, Källersjö M, Lipscomb D, Arnold GK (1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12:99–124

    PubMed  Google Scholar 

  • Felsenstein J (1973) Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool 22:240–249

    Google Scholar 

  • Fitzpatrick BM, Ryan ME, Johnson JR, Corush J, Carter ET (2015) Hybridization and the species problem in conservation. Curr Zool 61:206–216

    Google Scholar 

  • Fougère-Danezan M, Joly S, Bruneau A, Gao XF, Zhang LB (2015) Phylogeny and biogeography of wild roses with specific attention to polyploids. Annals Bot 115:275–291

    Google Scholar 

  • Fu LK (1992) China plant red data book: rare and endangered plants volume1. Science Press, Beijing

    Google Scholar 

  • Grimm GW, Denk T (2008) Its evolution in Platanus (Platanaceae): homoeologues, pseudogenes and ancient hybridization. Ann Bot 101:403–419

    CAS  PubMed  Google Scholar 

  • Gross BL, Rieseberg LH (2005) The ecological genetics of homoploid hybrid speciation. J Hered 96:241–252

    CAS  PubMed  Google Scholar 

  • Gu CZ (2003) Flora of China, vol 9. Science Press, Beijing, pp 360–455

    Google Scholar 

  • Guindon S, Gascuel O, Rannala B (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Mol Phylogenet Evol 111:76–86

    Google Scholar 

  • Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Harrison JWH (1921) The genus Rosa, its hybridology and other genetical problem. Trans Nat Hist Soc 5:244–298

    Google Scholar 

  • Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002) The use of dna sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89:279–286

    CAS  PubMed  Google Scholar 

  • Iwata H, Kato T, Ohno S (2000) Triparental origin of Damask roses. Gene 259:53–59

    CAS  PubMed  Google Scholar 

  • Jarvis CE (1992) Seventy-two proposals for the conservation of types of selected Linnaean generic names, the report of subcommittee 3C on the Lectotypification of Linnaean Generic Names. Taxon 41:52–583

    Google Scholar 

  • Jeffery EC, Longley AE, Penland CWT (1922) Polyploidy, polyspory and hybridism in the angiosperms. Science 12:517–518

    Google Scholar 

  • Jian HY, Zhang T, Wang QG, Li SB, Zhang H, Tang KX (2012) Karyological diversity of wild Rosa in Yunnan, southwestern China. Genet Resour Crop Evolut 60:115–127

    Google Scholar 

  • Kim JK, Ahn DC, Oh HJ, Kim KH, Choi YM, Oh SY, Kang NJ, Jeong BR, Kim ZH, Park YH (2010) Skewed inheritance of EST-SSR alleles in reciprocal crosses of cut roses. Kor J Hortic Sci Technol 28:618–626

    CAS  Google Scholar 

  • Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A (2014) Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol Biol 14:82

    PubMed  PubMed Central  Google Scholar 

  • Lewis WH (2016) Nomenclatural novelties in Rosa (Rosaceae) subgenus Rosa recognized in North America. Novon 25:22–46

    Google Scholar 

  • Li SQ, Zhang C, Gao XF (2017) Estimation of nuclear DNA content of 17 Chinese wild rose species by flow cytometry. Plant Sci J 35:558–565

    Google Scholar 

  • Liu JQ (2016) The integrative species concept’ and ‘species on the speciation way. Biodivers Sci 24:1004–1008

    Google Scholar 

  • Liu B, Abbott RJ, Lu Z, Tian B, Liu J (2014) Diploid hybrid origin of Ostryopsis intermedia (Betulaceae) in the Qinghai-Tibet Plateau triggered by Quaternary climate change. Mol Ecol 23:3013–3027

    CAS  PubMed  Google Scholar 

  • Matthews JR (1920) Hybridism and classification in the genus Rosa. New Phytol 19:153–171

    Google Scholar 

  • Melville R (1967) The problem of classification in the genus Rosa. Bulletin du Jardin Botanique National de Belgique 37:39–44

    Google Scholar 

  • Mercure M, Bruneau A (2008) Hybridization between the escaped Rosa rugose (Rosaceae) and native R. blanda in eastern North America. Am J Bot 95:597–607

    CAS  PubMed  Google Scholar 

  • Mikanagia Y, Ohbab H (2011) Rosa × mikawamontana Mikanagi and H. Ohba (Rosaceae), a new hybrid between R. sambucina and R. paniculigera from Aichi Prefecture, Central Japan. J Jpn Bot 86:240–252

    Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), New Orleans, pp 1–8

  • Motulsky H (1999) Analyzing data with GraphPad prism. GraphPad Software Inc, San Diego

    Google Scholar 

  • Muller K (2006) Incorporating information from length-mutational events into phylogenetic analysis. Mol Phylogenet Evol 38:667–676

    PubMed  Google Scholar 

  • Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    CAS  PubMed  Google Scholar 

  • Ohba H, Akiyama S, Mikanagi Y (2007) Interspecific hybrids between the Japanese species in Rosa Section Synstylae (Rosaceae). J Jpn Bot 82:45–53

    Google Scholar 

  • Orr HA (1997) Haldane’s rule. Annu Rev Ecol Syst 28:195–218

    Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    CAS  PubMed  Google Scholar 

  • Power DA (1991) Conservation of hybrid plants. Science 254:779–780

    Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rehder A (1962) Manual of cultivated trees and shrubs hardy in North America. Macmillan, Harvard Uiversity, New York

    Google Scholar 

  • Richard JA, Matthew JH, Simon JH, Adrian CB (2010) Homoploid hybrid speciation in action. Taxon 59:1375–1386

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  PubMed  Google Scholar 

  • Sang T (2002) Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol Biol 37:121–147

    CAS  PubMed  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    CAS  PubMed  Google Scholar 

  • Sokal PR, Sneath PHA (1993) Principles of numerical taxonomy. W. H. Freeman, San Francisco

    Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57:758–771

    PubMed  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swofford D (2002) PAUP 4.0 b10: Phylogenetic analysis using parsimony. Sinauer Associates, Sunderland

    Google Scholar 

  • Thompson JD, Higgins DG (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180

    PubMed  Google Scholar 

  • von Holdt BM, Pollinger JP, Earl DA, Knowles JC, Boyko AR, Parker H, Geffen E, Pilot M, Jedrzejewski W, Jedrzejewska B, Sidorovich V, Greco C, Randi E, Musiani M, Kays R, Bustamante CD, Ostrander EA, Novembre J, Wayne RK (2011) A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res 21:1294–1305

    Google Scholar 

  • Wayne RK, Jenks SM (1991) Mitochondrial DNA analysis implying extensive hybridization of the endangered red wolf Canis rufus. Nature 351:565–568

    CAS  Google Scholar 

  • Wissemann V (2000) Epicuticular wax morphology and the taxonomy of Rosa (section Caninae, subsection Rubiginosae). Plant Syst Evol 221:107–112

    Google Scholar 

  • Wissemann V, Riedel M, Riederer M (2006) Matroclinal inheritance of cuticular waxes in reciprocal hybrids of Rosa species, sect. Caninae (Rosaceae). Plant Syst Evol 263:181–190

    Google Scholar 

  • Zhu ZM, Gao XF (2015) Molecular evidence for the hybrid origin of Rosa lichiangensis (Rosaceae). Phytotaxa 222:221

    Google Scholar 

  • Zhu ZM, Gao XF, Fougere-Danezan M (2015) Phylogeny of Rosa sections Chinenses and Synstylae (Rosaceae) based on chloroplast and nuclear markers. Mol Phylogenet Evol 87:50–64

    PubMed  Google Scholar 

Download references

Acknowledgements

The research was partially supported by the National Natural Science Foundation of China (Grant No. 31670192); the Science and Technology Basic Work (Grant No. 2017FY100104) to X.-F.G. We also thank Zheng-Zhi Jiang for R.  × pseudobanksiae collection and Li-Bing Zhang for manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Fen Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Li, SQ., Zhang, Y. et al. Molecular and morphological evidence for hybrid origin and matroclinal inheritance of an endangered wild rose, Rosa  × pseudobanksiae (Rosaceae) from China. Conserv Genet 21, 1–11 (2020). https://doi.org/10.1007/s10592-019-01227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01227-8

Keywords

Navigation