Skip to main content

Advertisement

Log in

Rangewide tidewater goby occupancy survey using environmental DNA

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Rangewide monitoring of fish species is critical for determining status and trends in distribution; however, implementations of large-scale distribution surveys have generally been constrained by time and cost. This study used environmental DNA (eDNA) to monitor the presence or absence of two endangered tidewater goby species, the northern tidewater goby (Eucyclogobius newberryi) and the southern tidewater goby (Eucyclogobius kristinae), across their combined geographic range that encompasses the entire California coast (1350 km). A total of 197 estuary sites were surveyed in coastal California from Del Norte to San Diego counties between May and September 2016. Among the 197 sites, a total of 430 water samples were collected (one to six per site), filtered, and tested for the presence/absence of northern and southern tidewater goby, using species-specific quantitative PCR assays. Northern tidewater goby were detected at 81 out of 175 sites and southern tidewater goby were detected at 4 out of 22 sites, resulting in a combined naïve occupancy of 0.43. In contrast, application of a multi-scale occupancy model that accounted for imperfect detection estimated site occupancy at 0.55 (95% CRI 0.46–0.64), indicating that tidewater goby were present but not detected at 23 additional sites. This study illustrates that eDNA methods represent a reliable and efficient tool for aquatic species monitoring, but highlight the importance of accounting for imperfect detection by use of occupancy models in eDNA surveys. The tidewater goby eDNA distributional snapshot represents a baseline for evaluation of future trends in site occupancy that will inform conservation and management of this endangered species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Augerot X, Nadel Foley D (2005) Atlas of Pacific Salmon: the first map-based status Assessment of Salmon in the North Pacific. University of California Press, Berkeley

    Google Scholar 

  • Baldigo BP, Sporn LA, George SD, Ball JA (2017) Efficacy of environmental DNA to detect and quantify brook trout populations in headwater streams of the Adirondack Mountains, New York. Trans Am Fish Soc 146(1):99–111

    Article  CAS  Google Scholar 

  • Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chadderton WL, Lodge DM (2014) Environmental conditions influence eDNA persistence in aquatic systems. Environ Sci Technol 48(3):1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Bergman PS, Schumer G, Blankenship S, Campbell E (2016) Detection of adult green sturgeon using environmental DNA analysis. PLoS ONE 11(4):e0153500

    Article  PubMed  PubMed Central  Google Scholar 

  • Chamberlain CD (2006) Environmental variables of northern California lagoons and estuaries and the distribution of tidewater goby (Eucyclogobius newberryi). U. S. Fish and Wildlife Service, Arcata Fish and Wildlife Office, Arcata Fisheries Technical Report Number TR 2006-04, Arcata, California

  • Cheung WWL, Brodeur RD, Okey TA, Pauly D (2015) Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Prog Oceanogr 130:19–31

    Article  Google Scholar 

  • Darling JA, Mahon AR (2011) From molecules to management: Adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ Res 111(7):978–988

    Article  CAS  PubMed  Google Scholar 

  • Dawson MN, Louie KD, Barlow M, Jacobs DK, Swift CC (2002) Comparative phylogeography of sympatric sister species, Clevelandia ios and Eucyclogobius newberryi (Teleostei, Gobiidae), across the California Transition Zone. Mol Ecol 11:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Dejean T, Valentini A, Duparc A, Pellier-Cuit S, Pompanon F, Taberlet P, Miaud C (2011) Persistence of Environmental DNA in Freshwater Ecosystems. PLoS ONE 6, e23398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E, Miaud C (2012) Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus: Alien invasive species detection using eDNA. J Appl Ecol 49(4):953–959

    Article  Google Scholar 

  • Donovan TM, Hines J (2007) Exercises in occupancy modeling and estimation. http://www.uvm.edu/envnr/vtcfwru/spreadsheets/occupancy.htm. Accessed 05 Jan 2018

  • Dorazio RM, Erickson RA (2017) eDNAoccupancy: an R package for multi-scale occupancy modeling of environmental DNA data. Mol Ecol Resour 18:368–380

    Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sulivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81(02):163

    Article  PubMed  Google Scholar 

  • Earl DA, Louie KD, Bardeleben C, Swift CC, Jacobs DK (2010) Rangewide microsatellite phylogeography of the endangered tidewater goby, Eucyclogobius newberryi (Teleostei: Gobiidae), a genetically subdivided coastal fish with limited marine dispersal. Conserv Genet 11(1):103–114

    Article  Google Scholar 

  • Eichmiller JJ, Bajer PG, Sorensen PW (2014) The relationship between the distribution of common carp and their environmental DNA in a small lake. PLoS ONE 9(11):e112611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellison SL, English CA, Burns MJ, Keer JT (2006) Routes to improving the reliability of low level DNA analysis using real-time PCR. BMC Biotechnol 6(1):33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans NT, Shirey PD, Wieringa JG, Mahon AR, Lamberti GA (2017) Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing. Fisheries 42(2):90–99

    Article  Google Scholar 

  • Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiske I, Chandler R (2011) Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Softw 43(10):1–23

    Article  Google Scholar 

  • Foote AD, Thomsen PF, Sveegaard S, Wahlberg M, Kielgast J, Kyhn LA, Salling AB, Galatius A, Ludovic O, Gilbert MTP (2012) Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS ONE 7(8):e41781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelfand AE, Ghosh SK (1998) Model choice: a minimum posterior predictive loss approach. Biometrika 85(1):1–11

    Article  Google Scholar 

  • Goldberg CS, Sepulveda A, Ray A, Baumgardt J, Waits LP (2013) Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshw Sci 32(3):792–800

    Article  Google Scholar 

  • Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA, Spear SF, McKee A, Oyler-McCance SJ, Cornman RS, Laramie MB, Mahon AR, Lance RF, Pilliod DS, Strickler KM, Waits LP, Fremier AK, Takahara T, Herder JE, Taberlet P (2016) Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol 7(11):1299–1307

    Article  Google Scholar 

  • Guillera-Arroita G, Lahoz-Monfort JJ, MacKenzie DI, Wintle BA, McCarthy MA (2014) Ignoring imperfect detection in biological surveys is dangerous: a response to ‘fitting and interpreting occupancy models’. PLoS ONE 9(7):e99571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellmair M, Kinziger AP (2014) Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity. PLoS ONE 9(11):e113139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Israel JA, Bando KJ, Anderson EC, May B (2009) Polyploid microsatellite data reveal stock complexity among estuarine North American green sturgeon (Acipenser medirostris). Can J Fish Aquat Sci 66(9):1491–1504

    Article  CAS  Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical Overfishing and the Recent Collapse of Coastal Ecosystems. Science 293(5530):629–637

    Article  CAS  PubMed  Google Scholar 

  • Jane SF, Wilcox TM, McKelvey KS, Young MK, Schwartz MK, Lowe WH, Letchers BH, Whiteley AR (2015) Distance, flow, and PCR inhibition: eDNA dynamic in two headwater streams. Mol Ecol Res 15(1):216–227

    Article  CAS  Google Scholar 

  • Jerde CL, Mahon AR, Chadderton WL, Lodge DM (2011) “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv Lett 4:150–157

    Article  Google Scholar 

  • Kellner KF, Swihart RK (2014) Accounting for imperfect detection in ecology: a quantitative review. PLoS ONE 9(10):e111436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinziger AP, Hellmair M, McCraney WT, Jacobs DK, Goldsmith G (2015) Temporal genetic analysis of the endangered tidewater goby: extinction-colonization dynamics or drift in isolation? Mol Ecol 24(22):5544–5560

    Article  PubMed  Google Scholar 

  • Klymus KE, Richter CA, Chapman DC, Paukert C (2015) Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biol Conserv 183:77–84

    Article  Google Scholar 

  • Kroll AJ, Garcia TS, Jones JE, Dugger K, Murden B, Johnson J, Peerman S, Brintz B, Rochelle M (2015) Evaluating multi-level models to test occupancy state responses of plethodontid salamanders. PLoS ONE 10(11):e0142903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafferty KD, Swift CC, Ambrose RF (1999) Extirpation and recolonization in a metapopulation of an endangered fish, the tidewater goby. Conserv Biol 13(6):1447–1453

    Article  Google Scholar 

  • MacKenzie DL, Nichols JD, Royle JA, Pollack KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier, Oxford

    Google Scholar 

  • Margurran AE (2004) Measuring biological diversity. Blackwell Science, Malden

    Google Scholar 

  • McCraney WT, Goldsmith G, Jacobs DK, Kinziger AP (2010) Rampant drift in artificially fragmented populations of the endangered tidewater goby (Eucyclogobius newberryi): tidewater goby conservation genetics. Mol Ecol 19:3315–3327

    Article  CAS  PubMed  Google Scholar 

  • McGourty K, Kinziger AP, Goldsmith G (2008) Spawning time, fecundity, habitat utilization, and parasites of a Northern California population of tidewater goby, Eucyclogobius newberryi. California Fish Game 94:18–32

    Google Scholar 

  • Moyle P (2002) Inland fishes of California. University of California Press, Berkeley

    Google Scholar 

  • Pilliod DS, Goldberg CS, Arkle RS, Waits LP, Richardson J (2013) Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can J Fish Aquat Sci 70:1123–1130

    Article  CAS  Google Scholar 

  • Pilliod DS, Goldberg CS, Arkle RS, Waits LP (2014) Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol Ecol Res 14:109–116. https://doi.org/10.1111/1755-0998.12159

    Article  CAS  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344(6187):1246752

    Article  CAS  PubMed  Google Scholar 

  • Port JA, O’Donnell JL, Romero-Maraccini OC, Leary PR, Litvin SY, Nickols KJ, Yamahara KM, Kelly RP (2016) Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol Ecol 25(2):527–541

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Reid SB, Goodman DH (2016) Pacific Lamprey in Coastal Drainages of California: Occupancy Patterns and Contraction of the Southern Range. Trans Am Fish Soc 145:703–711

    Article  Google Scholar 

  • Roussel J-M, Paillisson J-M, Tréguier A, Petit E (2015) The downside of eDNA as a survey tool in water bodies. J Appl Ecol 52(4):823–826

    Article  CAS  Google Scholar 

  • Schmelzle MC, Kinziger AP (2016) Using occupancy modelling to compare environmental DNA to traditional field methods for regional-scale monitoring of an endangered aquatic species. Mol Ecol Res 16(4):895–908

    Article  CAS  Google Scholar 

  • Schmidt BR, Kéry M, Ursenbacher S, Hyman OJ, Collins JP (2013) Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods Ecol Evol 4(7):646–653

    Article  Google Scholar 

  • Schneider J, Valentini A, Dejean T, Montarsi F, Taberlet P, Glaizot O, Fumagalli L (2016) Detection of invasive mosquito vectors using environmental DNA (eDNA) from water samples. PLoS ONE 11(9):e0162493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smart AS, Tingley R, Weeks AR, van Rooyen AR, McCarthy MA (2015) Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecol Appl 25(7):1944–1952

    Article  PubMed  Google Scholar 

  • Starks HA, Clemento AJ, Garza JC (2016) Discovery and characterization of single nucleotide polymorphisms in coho salmon, Oncorhynchus kisutch. Mol Ecol Res 16:277–287

    Article  CAS  Google Scholar 

  • Strickler KM, Fremier AK, Goldberg CS (2015) Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol Conserv 183:85–92

    Article  Google Scholar 

  • Swenson RO (1999) The ecology, behavior, and conservation of the tidewater goby, Eucyclogobius newberryi. Environ Biol Fishes 55:99–119

    Article  Google Scholar 

  • Swift CC, Nelson JL, Maslow C, Stein T (1989) Biology and distribution of the tidewater goby, Eucyclogobius newberryi (Pisces: Gobiidae) of California. Contributions in Science 404. Natural History Museum of Los Angeles County, Los Angeles

    Google Scholar 

  • Swift CC, Spies B, Ellingson RA, Jacobs DK (2016) A new species of the bay goby genus Eucyclogobius, endemic to Southern California: evolution, conservation, and decline. PLoS ONE 11(7):e0158543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahara T, Minamoto T, Doi H (2013) Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE 8, e56584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahara T, Minamoto T, Hideyuki D (2015) Effects of sample processing on the detection rate of environmental DNA from the Common Carp (Cyprinus carpio). Biol Conserv 183:64–69

    Article  Google Scholar 

  • Thomsen PF, Willerslev E (2015) Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18

    Article  Google Scholar 

  • Thomsen PF, Kielgast J, Iversen LL, Møller PR, Rasmussen M, Willerslev E (2012) Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7, e41732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen PF, Møller PR, Sigsgaard EE, Knudsen SW, Jørgensen OA, Willerslev E (2016) Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS ONE 11(11):e0165252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • United States Fish and Wildlife Service (USFWS) (2005) Recovery plan for the tidewater goby (Eucyclogobius newberryi). U.S. Fish and Wildlife Service, Portland, Oregon

    Google Scholar 

  • United States Fish and Wildlife Service (USFWS) (2014) Endangered and threatened wildlife and plants; reclassifying the tidewater goby from endangered to threatened; proposed rule. Fed Reg 79:14340–14362

    Google Scholar 

  • Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, Bellemain E, Besnard A, Coissac E, Boyer F, Gaboriaud C, Jean P, Poulet N, Roset N, Copp GH, Geniez P, Pont D, Argillier C, Baudoin J-M, Peroux T, Crivelli AJ, Olivier A, Acqueberge M, Le Brun M, Møller PR, Willerslev E, Dejean T (2016) Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol 25(4):929–942

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S (2010) Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J Mach Learn Res 11:3571–3594

    Google Scholar 

  • Watanabe S (2013) A widely applicable Bayesian information criterion. J Mach Learn Res 14:867–897

    Google Scholar 

  • Weltz K, Lyle JM, Ovenden J, Morgan JA, Moreno DA, Semmens JM (2017) Application of environmental DNA to detect an endangered marine skate species in the wild. PLoS ONE 12(6):e0178124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox TM, Carim KJ, McKelvey KS, Young MK, Schwartz MK (2015) The dual challenges of generality and specificity when developing environmental DNA markers for species and subspecies of Oncorhynchus. PLoS ONE 10(11):e0142008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox TM, McKelvey KS, Young MK, Sepulveda AJ, Shepard BB, Jane SF, Whiteley AR, Lowe WH, Schwartz MK (2016) Understanding environmental DNA detection probabilities: a case study using a stream-dwelling char Salvelinus fontinalis. Biol Conserv 194:209–216

    Article  Google Scholar 

  • Williams KE, Huyvaert KP, Piaggio AJ (2017) Clearing muddied waters: Capture of environmental DNA from turbid waters. PLoS ONE 12(7):e0179282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka H, Motozawa H, Tsuji S, Miyazawa RC, Takahara T, Minamoto T (2016) On-site filtration of water samples for environmental DNA analysis to avoid DNA degradation during transportation. Ecol Res 31(6):963–967

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Andre Buchheister, Robert Dorazio, and Darren Ward for their comments and statistical advice. Brenton Spies provided access to tidewater goby field survey data. David Anderson, Alex Blessing, Stefan Bütikofer, Jessy Carlson, Ryan Clark, Rhys Evans, Doreen Hansen, Chad Martel, Keith Parker, and Lisa Stratton assisted with field collections. Anthony Desch, Leslie Farrar, Mark Henderson, Rod Nakamoto, Molly Schmelzle, and Peggy Wilzbach provided technical support. This project was supported by a grant from the California Department of Transportation to APK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Kinziger.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutter, M., Kinziger, A.P. Rangewide tidewater goby occupancy survey using environmental DNA. Conserv Genet 20, 597–613 (2019). https://doi.org/10.1007/s10592-019-01161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01161-9

Keywords

Navigation