Skip to main content
Log in

Paternity analysis reveals constraints on hybridization potential between native and introduced bluebells (Hyacinthoides)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The native UK bluebell Hyacinthoides non-scripta is considered to be at risk from hybridization with naturalised non-native bluebells. The non-natives, likely to be hybrid themselves (H. x massartiana) between H. non-scripta and H. hispanica, occur in relatively small numbers throughout the UK range of natives. Full interfertility between taxa has been repeatedly asserted in reporting spread of non-natives and predicting genetic erosion or assimilation of the native. However, there have been no published data to support suppositions that non-natives arose from in-situ hybridization, or that natural hybridization represents an ongoing threat to the native bluebell. Here we first investigated hybridization potential via reciprocal hand-crosses and observed overlap in flowering periods of native and non-native bluebells, finding that flowering was largely synchronous and that seed set and early seedling survival were equivalent for between-taxon crosses. We then established an experimental array allowing natural pollination to occur among flowering plants, and determined the paternity of offspring using microsatellite markers. We found that natives were more likely to produce seeds than non-natives, and that paternities approximated three native to one non-native, regardless of the identity of the maternal parent. Our results demonstrate that hybridization in natural populations and introgression between natives and non-natives are possible. However, lower reproductive success of non-natives coupled with the massive numerical advantage of natives represents a substantial constraint against ‘extinction-by-hybridization’ of H. non-scripta in the UK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beatty GE, Barker L, Chen P-P, Kelleher CT, Provan J (2015) Cryptic introgression into the kidney saxifrage (Saxifraga hirsuta) from its more abundant sympatric congener Saxifraga spathularis, and the potential risk of genetic assimilation. Ann Bot 115:179–186

    Article  CAS  PubMed  Google Scholar 

  • Blackman GE, Rutter AJ (1954) Endymion [Hyacinthoides] non-scriptus (L.) Garcke [non-scripta (L.) Chouard ex Rothm.]. J Ecol 42:629–638

    Article  Google Scholar 

  • Bleeker W, Schmitz U, Ristow M (2007) Interspecific hybridisation between alien and native plant species in Germany and its consequences for native biodiversity. Biol Conserv 137:248–253

    Article  Google Scholar 

  • Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Branquard E, Vanderhoeven S, Van Landuyt W, Van Rossum F, Verloove F (2010) Harmonia database: Hyacinthoides hispanica. Harmonia version 1.2, Belgian Forum on Invasive Species, Accessed 1 Oct 2013 from: http://ias.biodiversity.be/species/show/132

  • Cheung KW, Razeq FM, Sauder CA, James T, Martin SL (2015) Bidirectional but asymmetrical sexual hybridization between Brassica carinata and Sinapis arvensis (Brassicaceae). J Plant Res 128:469–480

    Article  CAS  PubMed  Google Scholar 

  • Corbet SA (1998) Fruit and seed production in relation to pollination and resources in bluebell Hyacinthoides non-scripta. Oecologia 114:349–360

    Article  PubMed  Google Scholar 

  • Corbet SA (1999) Spatiotemporal patterns in the flowering of bluebell, Hyacinthoides non-scripta (Hyacinthaceae). Flora 194:345–356

    Article  Google Scholar 

  • Corbet SA, Tiley CF (1999) Insect visitors to flowers of bluebell (Hyacinthoides non-scripta). Entomol Monthly Mag 135(1620–1623):133–141

    Google Scholar 

  • Crawley MJ (2005) The Flora of Berkshire. Harpenden. Brambleby Books, Herts

    Google Scholar 

  • Crawley MJ (2007) The R Book. Wiley, Chichester

    Book  Google Scholar 

  • Cruzan MB, Barrett SCH (1996) Postpollination mechanisms influencing mating patterns and fecundity: an example from Eichhornia paniculata. Am Nat 147:576–598

    Article  Google Scholar 

  • Currat M, Ruedi M, Petit RJ, Excoffier L (2008) The hidden side of invasions: massive introgression by local genes. Evolution 62:1908–1920

    PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97:7043–7050

    Article  CAS  PubMed  Google Scholar 

  • Geerinck D (1996) An epithet for the hybrid Hyacinthoides hispanica (Mill.) Rothm x Hyacinthoides non-scripta. (L.) Chouard ex Rothm: Hyacinthoides x massartiana Geerinck (Liliaceae). Belg J Bot 129:83–85

    Google Scholar 

  • Genovart M (2009) Natural hybridization and conservation. Biodivers Conserv 18:1435–1439

    Article  Google Scholar 

  • Grosser C, Potts BM, Vaillancourt RE (2010) Microsatellite based paternity analysis in a clonal Eucalyptus nitens seed orchard. Silvae Genet 59:57–62

    Article  Google Scholar 

  • Grundmann M, Rumsey FJ, Ansell SW, Russell SJ, Darwin SC, Vogel JC, Spencer M, Squirrell J, Hollingsworth PM, Ortiz S, Schneider H (2010) Phylogeny and taxonomy of Hyacinthoides. Taxon 59:68–82

    Article  Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, de Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12(10):e0185809. https://doi.org/10.1371/journal.pone.0185809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hersch EI, Roy BA (2007) Context-dependent pollinator behavior: an explanation for patterns of hybridization among three species of Indian paintbrush. Evolution 61:111–124

    Article  PubMed  Google Scholar 

  • Hodkinson DJ, Thompson K (1997) Plant dispersal: the role of man. J Appl Ecol 34:1484–1496

    Article  Google Scholar 

  • Huxel GR (1999) Rapid displacement of native species by invasive species: effects of hybridization. Biol Conserv 89:143–152

    Article  Google Scholar 

  • Ietswaart JH, de Smet SJM, Lubbers JPM (1983) Hybridisation between Scilla non-scripta. and S. hispanica (Liliaceae) in the Netherlands. Acta Bot Neerl 32:467–480

    Article  Google Scholar 

  • Ingrouille M (1995) Historical ecology of the British flora. Chapman and Hall, London

    Book  Google Scholar 

  • Johnson MG, Lang K, Manos P, Golet GH, Schierenbeck KA (2016) Evidence for genetic erosion of a California native tree, Platanus racemosa, via recent, ongoing introgressive hybridization with an introduced ornamental species. Conserv Genet 17:593–602

    Article  Google Scholar 

  • Johnston JA, Arnold ML, Donovan LA (2003) High hybrid fitness at seed and seedling life history stages in Louisiana irises. J Ecol 91:438–446

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  Google Scholar 

  • Klein EK, Lagache-Navarro L, Petit RJ (2017) Demographic and spatial determinants of hybridization rate. J Ecol 105:29–38. https://doi.org/10.1111/1365-2745.12674

    Article  Google Scholar 

  • Knight GH (1964) Some factors affecting the distribution of Endymion nonscriptus (L.) Garcke in Warwickshire woods. J Ecol 52:405–421

    Article  Google Scholar 

  • Kohn DD, Hulme PE, Hollingsworth PM, Butler A (2009) Are native bluebells (Hyacinthoides non-scripta) at risk from alien congenerics? Evidence from distributions and co-occurrence in Scotland. Biol Conserv 142:61–74

    Article  Google Scholar 

  • Kowarik I (2003) Human agency in biological invasions: secondary releases foster naturalisation and expansion of alien plant species. Biol Invasions 5:293–312

    Google Scholar 

  • Larcombe MJ, Holland B, Steane DA, Jones RC, Nicolle D, Vaillancourt RE, Potts BM (2015) Patterns of reproductive isolation in Eucalyptus—a phylogenetic perspective. Mol Biol Evol 32:1833–1846

    Article  CAS  PubMed  Google Scholar 

  • Leslie AC (1987) Flora of surrey supplement and checklist. AC & P Leslie, Guildford, p 43

    Google Scholar 

  • Lewontin RC, Birch LC (1966) Hybridization as a source of variation for adaptation to new environments. Evolution 20:315–336

    Article  CAS  PubMed  Google Scholar 

  • Li TJ, Xu LL, Liao L, Deng HS, Han XJ (2014) Patterns of hybridization in a multispecies hybrid zone in the Ranunculus cantoniensis complex (Ranunculaceae). Bot J Linn Soc 174:227–239

    Article  Google Scholar 

  • Littlemore J, Barker S (2001) The ecological response of forest ground flora and soils to experimental trampling in British urban woodlands. Urban Ecosyst 5:257–276

    Article  Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237

    Article  Google Scholar 

  • Mallet J (2008) Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philos Trans R Soc London B 363:2971–2986

    Article  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • Marutani M, Sheffer RD, Kamemoto H (1993) Cytological analysis of Anthurium andraeanum (Araceae), its related taxa and their hybrids. Am J Bot 80:93–103

    Article  Google Scholar 

  • McKellar MA, Quesenberry KH (1992) Chromosome pairing and pollen viability in Desmodium ovalifolium Wall X Desmodium heterocarpon (L) Dc hybrids. Aust J Bot 40:243–247

    Article  Google Scholar 

  • Merryweather J, Fitter A (1995) Arbuscular mycorrhiza and phosphorus as controlling factors in the life history of Hyacinthoides non-scripta (L.) Chouard ex Rothm. New Phytol 129:629–636

    Article  Google Scholar 

  • Natalis LC, Wesselingh RA (2012) Post-pollination barriers and their role in asymmetric hybridization in Rhinanthus (Orobanchaceae). Am J Bot 99:1847–1856

    Article  PubMed  Google Scholar 

  • Page KW (1987) Hybrid bluebells. Bot Soc Br Isles News 46:9

    Google Scholar 

  • Pilgrim E, Hutchinson N (2004) Bluebells for Britain—the report of the 2003 Bluebells for Britain survey. In: Vines G (ed). Salisbury: Plantlife

    Google Scholar 

  • Plume O, Raimondo FM, Troia A (2015) Hybridization and competition between the endangered sea marigold (Calendula maritima, Asteraceae) and a more common congener. Plant Biosyst 149:68–77

    Article  Google Scholar 

  • Prentis PJ, White EM, Radford IJ, Lowe AJ, Clarke AR (2007) Can hybridization cause local extinction: A case for demographic swamping of the Australian native Senecio pinnatifolius by the invasive Senecio madagascariensis? New Phytol 176:902–912. https://doi.org/10.1111/j.1469-8137.2007.02217.x

    Article  CAS  PubMed  Google Scholar 

  • Preston CD, Pearman DA, Dines TD (eds) (2002) New atlas of the British Flora. Oxford University Press, Oxford, p 817

    Google Scholar 

  • Quené-Boterenbrood AJ (1984) Over het voorkomen van Scilla non-scripta (L.) Hoffmanns, Link S. hispanica Miller en hun hybride in Nederland. Gorteria 12:91–104

    Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Rands SA, Whitney HM (2011) Field margins, foraging distances and their impacts on nesting pollinator success. PLoS ONE 6(10):e25971. https://doi.org/10.1371/journal.pone.0025971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109

    Article  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372

    Article  PubMed  Google Scholar 

  • Rix M (2004) Plate 481 Hyacinthoides non-scripta, Hyacinthaceae. Curtis’s Bot Mag 21:20–25

    Article  Google Scholar 

  • Simon M, Durand S, Pluta N, Gobron N, Botran L, Ricou A, Camilleri C, Budar F (2016) Genomic conflicts that cause pollen mortality and raise reproductive barriers in Arabidopsis thaliana. Genetics 203:1353–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikanth S, Rao MV, Mallikarjuna N (2014) Interspecific hybridization between Cajanus cajan (L.) Millsp and C. lanceolatus (WV Fitgz) van der Maesen. Plant Genet Resour 12:255–258

    Article  Google Scholar 

  • Stace CA, Preston CD, Pearman DA (2015) Hybrid Flora of the British Isles. Botanical Society of Britain & Ireland, London

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University press, New York.USA

    Book  Google Scholar 

  • Thompson PA, Cox SA (1978) Germination of the bluebell Hyacinthoides non-scripta in relation to its distribution and habitat. Ann Bot 42:51–62

    Article  Google Scholar 

  • Thompson K, Grime JP (1979) Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J Ecol 67:893–921

    Article  Google Scholar 

  • Turrill WB (1951) Some problems of plant range and distribution. J Ecol 39:205–227

    Article  Google Scholar 

  • Urbanek S, Bibiko H-J (2012) R.app GUI 1.62 (6558 Snow Leopard build), © R Foundation for Statistical Computing, 2012. R: Copyright © 2004–2013, The R Foundation for Statistical Computing; http://www.R-project.org

  • Vandelook F, Van Assche JA (2008) Temperature requirements for seed germination and seedling development determine timing of seedling emergence of three monocotyledonous temperate forest spring geophytes. Ann Bot 102:865–875

    Article  PubMed  PubMed Central  Google Scholar 

  • Warburg EF (1962) Endymion. p 974 in: Clapham AR, Tutin TG, Warburg EF (eds) Flora of the British Isles. Cambridge: Cambridge University Press

    Google Scholar 

  • Wildlife and Countryside Act (1981) http://www.jncc.gov.uk/

  • Wilson JY (1956) Polyploidy in bluebells (Endymion nonscriptus and E. hispanicus). Nature 178:195

    Article  Google Scholar 

  • Wilson JY (1959) Vegetative reproduction in the bluebell Endymion nonscriptus (L.) Garcke. New Phytol 58:155–163

    Article  Google Scholar 

  • Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15:1039–1053

    Article  Google Scholar 

  • Zlonis KJ, Gross BL (2018) Genetic structure, diversity, and hybridization in populations of the rare arctic relict Euphrasia hudsoniana (Orobanchaceae) and its invasive congener. Euphrasia stricta. Conserv Genet 19:43–55. https://doi.org/10.1007/s10592-017-0995-x

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Daphne Jackson Fellowship to DDK funded by the Natural Environment Research Council, the European Union FP 6 Integrated Project ALARM: Assessing LArgescale environmental Risks for biodiversity with tested Methods (GOCE-CT-2003-506675), the Botanical Society of the British Isles, the National Botanic Gardens of Scotland Membership Programme Small Projects Fund, and a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada to SCHB. Our thanks to Jane Squirrell for work on pollen and chromosomes at RBGE, to Alex Clark for translating Geerinck (1996), and to landowners for permissions. The Royal Botanic Garden Edinburgh is supported by the Scottish Government’s Rural and Environmental Science and Analytical Services Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Kohn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Design of the experimental array established at the Royal Botanic Garden Edinburgh to investigate natural crossing between native and non-native bluebells. (A) A group of 16 flowering plants, showing pattern of individually-potted natives (8) and non-natives (8). The triploid plant was a non-native. (B) Schematic field layout of experimental array (not to scale). The seven groups (shaded boxes), of 16 bluebells each, occupied a total area of 75 m x 40 m, with each group 23.5-35 m from the nearest other group (DOCX 53 KB)

Supplementary Fig. 2

. Example of stained and unstained bluebell pollen, showing 100% viability (native, left) and 14% viability (non-native, right). Size bars on the images are 100 µm at lower magnification (left) and 50 µm at the higher magnification (right) (DOCX 822 KB)

Supplementary Table 1

Statistics and results (in bold) for interfertility and early seedling survival in experimental hand-crosses between native and non-native Hyacinthoides taxa. See Figure 4 for plots of these data. Crosses are maternal taxon x paternal taxon; crosses in 2009 and 2010 comprised native maternal plants only. (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohn, D.D., Ruhsam, M., Hulme, P.E. et al. Paternity analysis reveals constraints on hybridization potential between native and introduced bluebells (Hyacinthoides). Conserv Genet 20, 571–584 (2019). https://doi.org/10.1007/s10592-019-01158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01158-4

Keywords

Navigation