Skip to main content

Advertisement

Log in

Effective to census population size ratios in two Near Threatened Mediterranean amphibians: Pleurodeles waltl and Pelobates cultripes

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Efforts to mitigate amphibian declines are hindered by a lack of information about basic aspects of their biology and demography. The effective to census population size ratio (N e /N c ) is one of the most important parameters for the management of wildlife populations because it combines information on population abundance and genetic diversity and helps predict population viability in the long term. Few studies have calculated this ratio in amphibians, which sometimes show low ratios, associated with a higher extinction risk. Here we integrate field-based (capture-mark-recapture studies, egg string counts) and molecular approaches (estimation of the effective number of breeders (N b ) and the effective population size (N e ) based on genotypes from larval cohorts and candidate parents) to produce the first estimates of the N e /N c and N b /N c ratios in two amphibians, the Iberian ribbed newt Pleurodeles waltl and the western spadefoot Pelobates cultripes. Additionally, we investigate sex-biased dispersal in both species based on direct (field observations) and indirect (genetic) evidence. Both species showed similar ratios, slightly lower in Pleurodeles (0.21–0.24) than in Pelobates (0.25–0.30). Observed displacement rates were low in both species (P. waltl = 0.51%; P. cultripes = 1.23%). We found no evidence for sex-biased dispersal in P. cultripes, but both direct and indirect evidences suggest a tendency for female-biased dispersal in P. waltl. We discuss differences in the genetic estimates of N e and N b provided by three inference methods and the implications of our findings for the management of these species, characteristic of Mediterranean wetlands in the Iberian Peninsula and listed as Near Threatened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Álvarez D, Lourenço A, Oro D, Velo-Antón G (2015) Assessment of census (N) and effective population size (Ne) reveals consistency of Ne single-sample estimators and a high Ne/N ratio in an urban and isolated population of fire salamanders. Conserv Genet Resour 7:705–712. doi:10.1007/s12686-015-0480-0

    Article  Google Scholar 

  • Araújo MB, Guilhaumon F, Neto DR, Pozo IO, Calmaestra RG (2011) Impactos, vulnerabilidad y adaptación al cambio climático de la biodiversidad española. 2. Fauna de Vertebrados. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Baalsrud HT, Sæther B-E, Hagen IJ, Myhre AM, Ringsby TH, Pärn H, Jensen H (2014) Effects of population characteristics and structure on estimates of effective population size in a house sparrow metapopulation. Mol Ecol 23:2653–2668. doi:10.1111/mec.12770

    Article  PubMed  Google Scholar 

  • Beebee TJC (2009) A comparison of single-sample effective size estimators using empirical toad (Bufo calamita) population data: genetic compensation and population size-genetic diversity correlations. Mol Ecol 18:4790–4797. doi:10.1111/j.1365-294X.2009.04398.x

    Article  CAS  PubMed  Google Scholar 

  • Beja P, Bosch J, Tejedo M et al (2009) Pleurodeles waltl. The IUCN Red List of Threatened Species 2009. http://www.iucnredlist.org. Accessed 15 July 2016

  • Beja P, Bosch J, Tejedo M et al (2016) Pelobates cultripes. The IUCN Red List of Threatened Species 2016. http://www.iucnredlist.org. Accessed 15 July 2016

  • Brede EG, Beebee TJC (2006) Large variations in the ratio of effective breeding and census population sizes between two species of pond-breeding anurans. Biol J Linn Soc 89:365–372. doi:10.1111/j.1095-8312.2006.00680.x

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Charlesworth B (2009) Effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205. doi:10.1038/nrg2526

    Article  CAS  PubMed  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214. doi:10.1111/1755-0998.12157

    Article  CAS  PubMed  Google Scholar 

  • Easteal S (1985) The ecological genetics of introduced populations of the giant toad Bufo marinus. II. Effective population size. Genetics 110:107–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Favre L, Balloux F, Goudet J, Perrin N (1997) Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns. Proc Roy Soc London B Biol Sci 264:127–132. doi:10.1098/rspb.1997.0019

    Article  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford

    Book  Google Scholar 

  • Fortuna MA, Gómez-Rodríguez C, Bascompte J (2006) Spatial network structure and amphibian persistence in stochastic environments. Proc Roy Soc London B Biol Sci 273:1429–1434. doi:10.1098/rspb.2005.3448

    Article  Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107. doi:10.1017/S0016672300034455

    Article  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63. doi:10.1016/j.biocon.2013.12.036

    Article  Google Scholar 

  • García-París M, Montori A, Herrero P (2004) Fauna Iberica. Vol. 24. Amphibia: Lissamphibia. Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318. doi:10.1046/j.1365-294X.2001.01190.x

    Article  CAS  PubMed  Google Scholar 

  • Gill DE (1978) Effective population size and interdemic migration rates in a metapopulation of the red-spotted newt, Notophthalmus viridescens (Rafinesque). Evolut Int J Org Evolut 32:839–849. doi:10.2307/2407498

    Article  Google Scholar 

  • Gutiérrez-Rodríguez J, Martínez-Solano Í (2013) Isolation and characterization of sixteen polymorphic microsatellite loci in the Western Spadefoot, Pelobates cultripes (Anura: Pelobatidae) via 454 pyrosequencing. Conserv Genet Resour 5:981–984. doi:10.1007/s12686-013-9948-y

    Article  Google Scholar 

  • Gutiérrez-Rodríguez J, Gonzalez EG, Martínez-Solano Í (2014) Development and characterization of twelve new polymorphic microsatellite loci in the Iberian ribbed newt, Pleurodeles waltl (Caudata: Salamandridae), with data on cross-amplification in P. nebulosus. Amphibia-Reptilia 35:129–134. doi:10.1163/15685381-00002926

    Article  Google Scholar 

  • Gutiérrez-Rodríguez J, Gonçalves J, Civantos E, Martínez-Solano Í (in review) Comparative landscape genetics of pond-breeding amphibians in Mediterranean temporal wetlands: the positive role of structural heterogeneity in promoting gene flow. Mol Ecol

  • Helfer V, Broquet T, Fumagalli L (2012) Sex-specific estimates of dispersal show female philopatry and male dispersal in a promiscuous amphibian, the alpine salamander (Salamandra atra). Mol Ecol 21:4706–4720. doi:10.1111/j.1365-294X.2012.05742.x

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann M, Hilton-Taylor C, Angulo A et al (2010) The impact of conservation on the status of the world’s vertebrates. Science 330:1503–1509. doi:10.1126/science.1194442

    Article  CAS  PubMed  Google Scholar 

  • Holleley C, Nichols R, Whitehead M, Adamack A, Gunn M, Sherwin W (2014) Testing single-sample estimators of effective population size in genetically structured populations. Conserv Genet 15:23–35. doi:10.1007/s10592-013-0518-3

    Article  Google Scholar 

  • Jehle R, Arntzen JW, Burke T, Krupa AP, Hödl W (2001) The annual number of breeding adults and the effective population size of syntopic newts (Triturus cristatus, T. marmoratus). Mol Ecol 10:839–850. doi:10.1046/j.1365-294X.2001.01237.x

    Article  CAS  PubMed  Google Scholar 

  • Johnson JR, Knouft JH, Semlitsch RD (2007) Sex and seasonal differences in the spatial terrestrial distribution of gray treefrog (Hyla versicolor) populations. Biol Conserv 140:250–258. doi:10.1016/j.biocon.2007.08.010

    Article  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555. doi:10.1111/j.1755-0998.2009.02787.x

    Article  PubMed  Google Scholar 

  • Kamath PL, Haroldson MA, Luikart G, Paetkau D, Whitman C, van Manen FT (2015) Multiple estimates of effective population size for monitoring a long-lived vertebrate: an application to Yellowstone grizzly bears. Mol Ecol 24:5507–5521. doi:10.1111/mec.13398

    Article  PubMed  Google Scholar 

  • Liebgold EB, Cabe PR, Jaeger RG, Leberg PL (2006) Multiple paternity in a salamander with socially monogamous behaviour. Mol Ecol 15:4153–4160. doi:10.1111/j.1365-294X.2006.03076.x

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, Ryman N, Tallmon D, Schwartz M, Allendorf F (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373. doi:10.1007/s10592-010-0050-7

    Article  CAS  Google Scholar 

  • Lynch M (1988) Estimation of relatedness by DNA fingerprinting. Mol Biol Evol 5:584–599

    CAS  PubMed  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics 163:1153–1167

    PubMed  PubMed Central  Google Scholar 

  • Montori A, Llorente GA, Santos X, Carretero MA (2002) Pleurodeles waltl Michahelles, 1830. Gallipato. In: Pleguezuelos JM, Márquez R, Lizana M (eds) Atlas y Libro Rojo de los Anfibios y Reptiles de España. 2nd edn. Dirección General de Conservación de la Naturaleza-Asociación Herpetológica Española, Madrid, pp 51–54

  • Mossman CA, Waser PM (1999) Genetic detection of sex-biased dispersal. Mol Ecol 8:1063–1067. doi:10.1046/j.1365-294x.1999.00652.x

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Tajima F (1981) Genetic drift and estimation of effective population size. Genetics 98:625–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nunney L, Elam DR (1994) Estimating the effective population size of conserved populations. Conserv Biol 8:175–184. doi:10.1046/j.1523-1739.1994.08010175.x

    Article  Google Scholar 

  • Palstra FP, Fraser DJ (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol 2:2357–2365. doi:10.1002/ece3.329

    Article  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Figueroa A, Fernández C, Amaro R, Hermida M, San Miguel E (2015) Population structure and effective/census population size ratio in threatened three-spined stickleback populations from an isolated river basin in northwest Spain. Genetica 143:403–411. doi:10.1007/s10709-015-9839-0

    Article  PubMed  Google Scholar 

  • Phillipsen IC, Funk WC, Hoffman EA, Monsen KJ, Blouin MS (2011) Comparative analyses of effective population size within and among species: ranid frogs as a case study. Evolut Int J Org Evolut 65:2927–2945. doi:10.1111/j.1558-5646.2011.01356.x

    Article  Google Scholar 

  • Pollock KH (1982) A capture-recapture design robust to unequal probability of capture. J Wildl Manage 46:752–757. doi:10.2307/3808568

    Article  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolut Int J Org Evolut 43:258–275. doi:10.2307/2409206

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolut Int J Org Evolut 43:223–225. doi:10.2307/2409177

    Article  Google Scholar 

  • Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185. doi:10.1017/S0016672300033620

    Article  Google Scholar 

  • Ruzzante DE, McCracken GR, Parmelee S, Hill K, Corrigan A, MacMillan J, Walde SJ (2016) Effective number of breeders, effective population size and their relationship with census size in an iteroparous species, Salvelinus fontinalis. Proc Roy Soc B Biol Sci doi:10.1098/rspb.2015.2601

    Google Scholar 

  • Sánchez-Montes G, Martínez-Solano Í (2011) Population size, habitat use and movement patterns during the breeding season in a population of Perez’s frog (Pelophylax perezi) in central Spain. Basic Appl Herpetol 25:81–96. doi:10.11160/bah.11013

    Google Scholar 

  • Sánchez-Montes G, Wang J, Ariño A, Vizmanos JL, Martínez-Solano Í (in review) Reliable effective/census population size ratios in seasonal-breeding species: opportunity for integrative demographic inferences based on capture-mark-recapture data and multilocus genotypes. Ecol Evol

  • Scribner KT, Arntzen JW, Burke T (1997) Effective number of breeding adults in Bufo bufo estimated from age-specific variation at minisatellite loci. Mol Ecol 6:701–712. doi:10.1046/j.1365-294X.1997.00238.x

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128. doi:10.1111/j.0906-7590.2005.04042.x

    Article  Google Scholar 

  • Talavera RR (1990) Evolución de Pelobátidos y Pelodítidos (Amphibia: Anura): morfología y desarrollo del sistema esquelético. Dissertation, Universidad Complutense de Madrid

  • Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONESAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301. doi:10.1111/j.1471-8286.2007.01997.x

    Article  PubMed  Google Scholar 

  • Tejedo M, Reques R (2002) Pelobates cultripes (Cuvier, 1829). Sapo de espuelas. In: Pleguezuelos JM, Márquez R, Lizana M (eds) Atlas y Libro Rojo de los Anfibios y Reptiles de España. 2nd edn. Dirección General de Conservación de la Naturaleza-Asociación Herpetológica Española, Madrid, pp 94–96

  • Trochet A, Le Chevalier H, Calvez O, Barthe L, Isselin-Nondedeu F, Picard D, Debelgarric M, Pégourié N, Rocher R, Ribéron A (2017) Postbreeding movements in marbled newts (Caudata, Salamandridae): a comparative radiotracking study in two habitat types. Herpetologica 73:1–9. doi:10.1655/Herpetologica-D-15-00072

    Article  Google Scholar 

  • Turner TF, Salter LA, Gold JR (2001) Temporal-method estimates of Ne from highly polymorphic loci. Conserv Genet 2:297–308. doi:10.1023/a:1012538611944

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • van de Vliet MS, Diekmann OE, Serrão EA, Beja P (2009) Isolation of highly polymorphic microsatellite loci for a species with a large genome size: sharp-ribbed salamander (Pleurodeles waltl). Mol Ecol Resour 9:425–428. doi:10.1111/j.1755-0998.2008.02436.x

    Article  Google Scholar 

  • Wang J (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979. doi:10.1534/genetics.166.4.1963

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J (2006) Informativeness of genetic markers for pairwise relationship and relatedness inference. Theor Popul Biol 70:300–321. doi:10.1016/j.tpb.2005.11.003

    Article  PubMed  Google Scholar 

  • Wang J (2007) Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet Res 89:135–153. doi:10.1017/S0016672307008798

    Article  CAS  PubMed  Google Scholar 

  • Wang J (2009) A new method for estimating effective population sizes from a single sample of multilocus genotypes. Mol Ecol 18:2148–2164. doi:10.1111/j.1365-294X.2009.04175.x

    Article  PubMed  Google Scholar 

  • Wang J (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11:141–145. doi:10.1111/j.1755-0998.2010.02885.x

    Article  PubMed  Google Scholar 

  • Wang J (2016) A comparison of single-sample estimators of effective population sizes from genetic marker data. Mol Ecol. doi:10.1111/mec.13725

    Google Scholar 

  • Wang J, Brekke P, Huchard E, Knapp LA, Cowlishaw G (2010) Estimation of parameters of inbreeding and genetic drift in populations with overlapping generations. Evolut Int J Org Evolut 64:1704–1718. doi:10.1111/j.1558-5646.2010.00953.x

    Article  Google Scholar 

  • Wang I, Johnson J, Johnson B, Shaffer H (2011) Effective population size is strongly correlated with breeding pond size in the endangered California tiger salamander, Ambystoma californiense. Conserv Genet 12:911–920. doi:10.1007/s10592-011-0194-0

    Article  Google Scholar 

  • Wang J, Santiago E, Caballero A (2016) Prediction and estimation of effective population size. Heredity 117:193–206. doi:10.1038/hdy.2016.43

    Article  CAS  PubMed  Google Scholar 

  • Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol 14:3335–3352. doi:10.1111/j.1365-294X.2005.02673.x

    Article  CAS  PubMed  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167. doi:10.1007/s10592-005-9100-y

    Article  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756. doi:10.1111/j.1755-0998.2007.02061.x

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262. doi:10.1111/j.1752-4571.2009.00104.x

    Article  PubMed  Google Scholar 

  • Waples RS, Do C, Chopelet J (2011) Calculating Ne and Ne/N in age-structured populations: a hybrid Felsenstein-Hill approach. Ecology 92:1513–1522. doi:10.1890/10-1796.1

    Article  PubMed  Google Scholar 

  • Waples RS, Luikart G, Faulkner JR, Tallmon DA (2013) Simple life-history traits explain key effective population size ratios across diverse taxa. Proc Roy Soc B-Biol Sci 280:20131339. doi:10.1098/rspb.2013.1339

    Article  Google Scholar 

  • Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197:769–780. doi:10.1534/genetics.114.164822

    Article  PubMed  PubMed Central  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139. doi:10.1080/00063659909477239

    Article  Google Scholar 

  • Wilson CC, McDermid JL, Wozney KM, Kjartanson S, Haxton TJ (2014) Genetic estimation of evolutionary and contemporary effective population size in lake sturgeon (Acipenser fulvescens Rafinesque, 1817) populations. J Appl Ichthyol 30:1290–1299. doi:10.1111/jai.12615

    Article  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Agüera, F. Alda, R. Álvarez, S. Barrionuevo, P. Cabezas, M. Casal, E. Garrandés, J.L. Gutiérrez, E. Iranzo, I. Irisarri, D. Llusia, P. Pavón, C. Pedraza, J. Pérez, E. Recuero, G. Rodríguez, A. Sabalza, D. Salvi, L. San José, C. Settanni, I. Urbán and M. Peñalver for help during field work, P. Arntzen for constructive comments on a previous draft, and S. Abalde for help with R scripts for analyses on replicate subsamples. JGR was supported by the Consejo Superior de Investigaciones Científicas of Spain (CSIC) and the European Social Fund (ESF) (JAE-pre PhD fellowship). GSM is funded by a predoctoral grant provided by the Asociación de Amigos de la Universidad de Navarra. This research was funded by grants CGL2008-04271-C02-01/BOS, and CGL2011-28300 (Ministerio de Ciencia e Innovación -MICINN-), Ministerio de Economía y Competitividad -MEC-, Spain, and FEDER) to IMS, who was supported by funding from the Spanish “Ramón y Cajal” and Severo Ochoa (SEV-2012-0262) programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Martínez-Solano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 535 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Rodríguez, J., Sánchez-Montes, G. & Martínez-Solano, I. Effective to census population size ratios in two Near Threatened Mediterranean amphibians: Pleurodeles waltl and Pelobates cultripes . Conserv Genet 18, 1201–1211 (2017). https://doi.org/10.1007/s10592-017-0971-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-0971-5

Keywords

Navigation