Skip to main content
Log in

Assessing genetic diversity for the USA endemic carnivorous plant Pinguicula ionantha R.K. Godfrey (Lentibulariaceae)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Understanding patterns of genetic diversity and population structure for rare, narrowly endemic plant species, such as Pinguicula ionantha (Godfrey’s butterwort; Lentibulariaceae), informs conservation goals and can directly affect management decisions. Pinguicula ionantha is a federally listed species endemic to the Florida Panhandle in the southeastern USA. The main goal of our study was to assess patterns of genetic diversity and structure in 17 P. ionantha populations, and to determine if diversity is associated with geographic location or population characteristics. We scored 240 individuals at a total of 899 AFLP markers (893 polymorphic markers). We found no relationship between the estimated population size with either of two measures of diversity (proportion of loci polymorphic, P = 0.37; Nei’s gene diversity, P = 0.50). We also found low levels of population genetic structure; there was no clear relationship of genetic isolation by distance (P = 0.23) and only a small (but significant) proportion of genetic variation was partitioned amongst regions (2.4 %, P = 0.02) or populations (20.8 %, P < 0.001). STRUCTURE analysis found that the model with two inferred clusters (K = 2) best described the AFLP data; the dominant cluster at each site corresponded to the results from PCoA and Nei’s genetic distance analyses. The observed patterns of genetic diversity suggest that although P. ionantha populations are isolated spatially by distance and both natural and anthropogenic barriers, some gene flow occurs among them or isolation has been too recent to leave a genetic signature. The relatively low level of genetic diversity associated with this species is a concern as it may impair fitness and evolutionary capability in a changing environment. The results of this study provide the foundation for the development of management practices that will assist in the protection of this rare carnivorous plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcalá RE, Domínguez CA (2012) Genetic structure of the carnivorous plant Pinguicula moranensis (Lentibulariaceae) on the transvolcanic Mexican Belt. Biochem Genet 50:416–427

    Article  PubMed  Google Scholar 

  • Althoff DM, Gitzendanner MA, Segraves KA (2007) The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Syst Biol 56:477–484

    Article  CAS  PubMed  Google Scholar 

  • Backs JR, Terry M, Klein M, Ashley MV (2015) Genetic analysis of a rare isolated species: a tough little West Texas oak, Quercus hinckleyi CH Mull. J Torrey Bot Soc 142:302–313

    Article  Google Scholar 

  • Blanca G, Ruiz-Rejon M, Zamora R (1999) Taxonomic revision of the genus Pinguicula L. in the Iberian Peninsula. Folia Geobot 34:337–361

    Article  Google Scholar 

  • Casper SJ, Stimper R (2009) Chromosome numbers in Pinguicula (Lentibulariaceae): survey, atlas, and taxonomic conclusions. Plant Syst Evol 277:21–60

    Article  Google Scholar 

  • Chung MY, Lopez-Pujol J, Chung MG (2013) Population history of the two carnivorous plants Drosera peltata var. nipponica and Drosera rotundifolia (Droseraceae) in Korea. Am J Bot 100:2231–2239

    Article  PubMed  Google Scholar 

  • Cieslak T, Polepalli JS, White A, Muller K, Borsch T, Barthlott W, Steiger J, Marchant A, Legendre L (2005) Phylogenetic analysis of Pinguicula (Lentibulariaceae): chloroplast DNA sequences and morphology support several geographically distinct radiations. Am J Bot 92:1723–1736

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Peruzzi L (2006) Pinguicula (Lentibulariaceae) in central Italy: taxonomic study. Ann Bot Fenn 43:321–337

    Google Scholar 

  • de Witte LC, Armbruster GFJ, Gielly L, Taberlet P, Stocklin J (2012) AFLP markers reveal high clonal diversity and extreme longevity in four key arctic-alpine species. Mol Ecol 21:1081–1097

    Article  PubMed  Google Scholar 

  • Demauro MM (1993) Relationship of breeding system to rarity in the lakeside daisy (Hymenoxys acaulis var. glabra). Conserv Biol 7:542–550

    Article  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475

    Article  PubMed  Google Scholar 

  • Ellison AM, Gotelli NJ (2009) Energetics and the evolution of carnivorous plants: Darwin’s ‘most wonderful plants in the world’. J Exp Bot 60:19–42

    Article  CAS  PubMed  Google Scholar 

  • Escaravage N, Questiau S, Pornon A, Doche B, Taberlet P (1998) Clonal diversity in a Rhododendron ferrugineum L. (Ericaceae) population inferred from AFLP markers. Mol Ecol 7:975–982

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falinska K, Lembicz M, Jarmolowski A, Borkowska L (2010) Patterns of genetic diversity in populations of Filipendula ulmaria (L.) at different stages of succession on a meadow abandoned for 30 years. Pol J Ecol 58:27–40

    Google Scholar 

  • Fenster CB, Galloway LF (2000) Inbreeding and outbreeding depression in natural populations of Chamaecrista fasciculata (Fabaceae). Conserv Biol 14:1406–1412

    Article  Google Scholar 

  • Florida Natural Areas Inventory (2010) Guide to the natural communities of Florida, 2010th edn. Florida Natural Areas Inventory, Tallahassee

    Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    Article  CAS  PubMed  Google Scholar 

  • Furches MS, Small RL, Furches A (2013) Genetic diversity in three endangered pitcher plant species (Sarracenia; Sarraceniaceae) is lower than widespread congeners. Am J Bot 100:2092–2101

    Article  PubMed  Google Scholar 

  • Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87:783–792

    Article  CAS  PubMed  Google Scholar 

  • Gitzendanner MA, Weekley CW, Germain-Aubrey CC, Soltis DE, Soltis PS (2012) Microsatellite evidence for high clonality and limited genetic diversity in Ziziphus celata (Rhamnaceae), an endangered, self-incompatible shrub endemic to the Lake Wales Ridge, Florida, USA. Conserv Genet 13:223–234

    Article  CAS  Google Scholar 

  • Godfrey RK, Stripling HL (1961) A synopsis of Pinguicula (Lentibulariaceae) in the Southeastern United States. Am Midl Nat 66:395–409

    Article  Google Scholar 

  • Heslop-Harrison Y (2004) Biological Flora of the British Isles, No. 237: pinguicula L. J Ecol 92:1071–1118

    Article  Google Scholar 

  • Heslop-Harrison Y, Heslop-Harrison J (1981) The digestive glands of Pinguicula: structure and cytochemistry. Ann Bot 47:293–319

    Google Scholar 

  • Horner JD, Hodcroft EB, Hale AM, Williams DA (2014) Clonality, genetic variation, and the origin of isolated western populations of the carnivorous plant, Sarracenia alata. J Torrey Bot Soc 141:326–337

    Article  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332

    Article  Google Scholar 

  • Huford KM, Krauss SL, Veneklaas EJ (2012) Inbreeding and outbreeding depression in Stylidium hispidum: implications for mixing seed sources for ecological restoration. Ecol Evol 2:2262–2273

    Article  Google Scholar 

  • Ilves A, Lanno K, Sammul M, Tali K (2013) Genetic variability, population size and reproduction potential in Ligularia sibirica (L.) populations in Estonia. Conserv Genet 14:661–669

    Article  Google Scholar 

  • Jennings DE, Rohr JR (2011) A review of the conservation threats to carnivorous plants. Biol Conserv 144:1356–1363

    Article  Google Scholar 

  • Karron JD (1987) A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners. Evol Ecol 1:47–58

    Article  Google Scholar 

  • Kephart SR (2004) Inbreeding and reintroduction: progeny success in rare Silene populations of varied density. Conserv Genet 5:49–61

    Article  Google Scholar 

  • Kesler HC, Trusty JL, Hermann SM, Guyer C (2008) Demographic responses of Pinguicula ionantha to prescribed fire: a regression-design LTRE approach. Oecologia 156:545–557

    Article  PubMed  Google Scholar 

  • Kim ES, Zaya DN, Fant JB, Ashley MV (2015) Genetic factors accelerate demographic decline in rare Asclepias species. Conserv Genet 16:359–369

    Article  Google Scholar 

  • Koopman MM, Carstens BC (2010) Conservation genetic inferences in the carnivorous pitcher plant Sarracenia alata (Sarraceniaceae). Conserv Genet 11:2027–2038

    Article  Google Scholar 

  • Legendre L (2000) The genus Pinguicula L. (Lentibulariaceae): an overview. Acta Bot Gall 147:77–95

    Article  Google Scholar 

  • López-Pujol J, Martinell MC, Massó S, Blanché C, Sáez L (2013) The ‘paradigm of extremes’: extremely low genetic diversity in an extremely narrow endemic species, Coristospermum huteri (Umbelliferae). Plant Syst Evol 299:439–446

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • Montlavo AM, Ellstrand NC (2001) Nonlocal transplantation and outbreeding depression in the subshrub Lotus scoparius (Fabaceae). Am J Bot 88:258–269

    Article  Google Scholar 

  • NatureServe (2015) NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. http://explorer.natureserve.org. Accessed: 20 Sept 2016

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2014) vegan: Community Ecology Package. R package version 2.2-0. http://CRAN.R-project.org/package=vegan

  • Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porras-Hurtado L, Ruiz Y, Santos C, Phillips C, Carracedo Á, Lareu MV. 2013. An overview of STRUCTURE: applications, parameter settings, and supporting software. Frontiers in Genetics, 4, p. 98

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Rodondi G, Beretta M, Andreis C (2010) Pollen morphology of alpine butterworts (Pinguicula L., Lentibulariaceae). Rev Palaeobot Palynol 162:1–10

    Article  Google Scholar 

  • Scariot V, De Keyser E, Handa T, De Riek J (2007) Comparative study of the discriminating capacity and effectiveness of AFLP, STMS and EST markers in assessing genetic relationships among evergreen azaleas. Plant Breeding 126:207–212

    Article  CAS  Google Scholar 

  • Schmidt K, Jensen K (2000) Genetic structure and AFLP variation of remnant populations in the rare plant Pedicularis palustris (Scrophulariaceae) and its relation to population size and reproductive components. Am J Bot 87:678–689

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland: Sinauer Associates

  • Tecic DL, McBride JL, Bowles ML, Nickrent DL (1998) Genetic variability in the federal threatened Mead’s milkweed, Asclepias meadii Torrey (Asclepiadaceae), as determined by allozyme electrophoresis. Ann Mo Bot Gard 85:97–109

    Article  Google Scholar 

  • United States Fish and Wildlife Service (2009) Pinguicula ionantha (Godfrey’s butterwort). 5-year review: Summary and Evaluation. Panama City, Florida

  • Vavrek MJ (2011) Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontological Electronica, 14

  • Vekemans X (2002) AFLP-SURV version 1.0. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium. http://www.ulb.ac.be/sciences/lagev/aflp-surv.html

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wunderlin RP, Hansen BF (2008) Pinguicula. In, Atlas of Florida Vascular Plants (http://www.plantatlas.usf.edu/). S. M. Landry and K. N. Campbell (application development), Florida Center for Community Design and Research. Institute for Systematic Botany, University of South Florida, Tampa

  • Yildirim H, Senol SG, Pirhan AF (2012) Pinguicula habilii (Lentibulariaceae), a new carnivorous species from South-West Anatolia, Turkey. Phytotaxa 64:46–58

    Article  Google Scholar 

  • Zamora R, Jamilena M, Rejon MR, Blanca G (1996) Two new species of the carnivorous genus Pinguicula, (Lentibulariaceae) from Mediterranean habitats. Plant Syst Evol 200:41–60

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the following individuals and organizations that made this project possible: Jean Mengelkoch (Illinois Natural History Survey); Michael R. Jenkins and David Morse (Florida Forest Service); Vivian Negron-Ortiz (U.S. Fish and Wildlife Service); Faye Winters (U.S. Bureau of Land Management); Jim Moyers (St. Joe Company); Wendy Jones (Tyndall Air Force Base); Caroline George (U.S. Fish and Wildlife Service); Dylan Shoemaker, Barry Townsend, Sandra Chafin, Lisa Duglecki, Max Prucell, Pat Prucell, Dave Peterson, Joy Peterson, and Matt Green (St. Joseph Bay State Buffer Preserve); Brittany Phillips (Apalachicola National Forest); Andres Botero (New York Botanical Garden). We also thank Mary Ashley, Janet Rizner Backs, John Wilk, Eun Sun Kim, Jason Palagi, Percy Jinga, and Vivian Negron-Ortiz for providing comments that improved the manuscript, and Danielle Ruffatto for assistance with the figures. Lastly, this project was supported by logistical and financial support from Florida Forest Service (FWS Section 6), U.S. Fish and Wildlife Service (Agreement No: FIIAC00685), U.S. Bureau of Land Management, Eastern Illinois University, Augustana College, New York Botanical Garden, Rancho Santa Ana Botanical Garden, University of Illinois, and Illinois Natural History Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda Molano-Flores.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaya, D.N., Molano-Flores, B., Feist, M.A. et al. Assessing genetic diversity for the USA endemic carnivorous plant Pinguicula ionantha R.K. Godfrey (Lentibulariaceae). Conserv Genet 18, 171–180 (2017). https://doi.org/10.1007/s10592-016-0891-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0891-9

Keywords

Navigation